Behaviour of Steel Plated RC Columns Subject to Lateral Loading

2005 ◽  
Vol 8 (4) ◽  
pp. 333-347 ◽  
Author(s):  
M.C. Griffith ◽  
Y.F. Wu ◽  
D.J. Oehlers

The main focus of this paper is to describe the behaviour of RC columns that are retrofitted with an alternative technique to “jacketing” or wrapping. This new technique consists of attaching steel plates to the flexural faces of a concrete column using bolts. It is envisaged that this technique would be suitable primarily for columns having rectangular cross-sections and in situations where lateral loading induces predominately a single plane of bending (as opposed to biaxial bending). Effectiveness of this new technique has been demonstrated by experimental testing and numerical simulations. This paper studies the mechanism of the new retrofit scheme, how it works, and the behaviour of columns retrofitted using such a scheme, as well as the important parameters that affect the response of the retrofitted columns. This study forms the basis for the design of the plate retrofitting system.

2013 ◽  
Vol 671-674 ◽  
pp. 1319-1323
Author(s):  
Zi Xue Lei ◽  
Yu Hang Han ◽  
San Sheng Dong ◽  
Jun Qing Guo

A centrally reinforced column is a new type of RC columns, formed by providing a reinforcement skeleton at the central part of the cross section of an ordinary RC column. Tests have shown that as compared with an ordinary RC column, this type of columns has a higher load carrying capacity and ductility. From the pushover analysis of a frame composed of ordinary RC columns and one consisting of centrally reinforced columns, their seismic performance under seismic load of 9-degree intensity was studied according to Chinese code, including target displacements, story-level displacements, interstory drifts, appearance and development of plastic hinges. The results indicate that although the dimensions of cross sections of columns in the frame with centrally reinforced columns are smaller than those of the ordinary frame, the former still has a higher overall load carrying capacity and seismic performance than the latter.


2015 ◽  
Vol 104 (23) ◽  
pp. 1-8
Author(s):  
Masano Yanagihara ◽  
Yuichi Koitabashi

2020 ◽  
Vol 20 (06) ◽  
pp. 2040006
Author(s):  
Yingwu Zhou ◽  
Wenlong He ◽  
Biao Hu ◽  
Zhiheng Hu

The performance of joint connections has always been the key to precast assembly structures. This paper proposes a new type of joint connection that is made by means of pre-embedded steel plates and connected by bolts or welding without any wet work. Located outside the beam-column joint, the connection is arranged around the inflection point of the beam where the bending moment is small. Three precast beams of different cross-sections and a set of cast-in-place concrete contrast beams were prepared and loaded by the anti-symmetric static loading method. The results show that the joint connection changes the failure mode of the specimens, transfers the failure section from the weak point to the non-weak point, and improves the bearing capacity of the specimens. With the increase of the cross-section area of the embedded steel plate at the joint, the bearing capacity and the ductility of the specimens increase. The energy consumption capacity of the precast specimen is significantly higher than that of the ordinary cast-in-place concrete specimen. Since the joint has not been destroyed, the component can be replaced when other parts of the specimen are destroyed.


2000 ◽  
Vol 27 (6) ◽  
pp. 1173-1182 ◽  
Author(s):  
H P Hong

The paper describes the development of a simple theoretical approach in estimating the capacity of short reinforced concrete (RC) columns under biaxial bending and axial load. The developed approach considers the nonlinear stress-strain relations of concrete and reinforcing steel and does not make the assumption about the limiting strain of extreme compression fiber of concrete. The solution is obtained using a nonlinearly constrained optimization algorithm. The approach was used to estimate the theoretical capacities of many tested RC columns found in the literature. A probabilistic analysis of the modeling errors was carried out using the ratios of the test-to-predicted results. The probabilistic analysis was extended to include two simplified theoretical methods: the reciprocal load method given by Bresler and the failure surface method given by Hsu.Key words: biaxial bending, modeling error, optimization, probability distribution.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2390 ◽  
Author(s):  
Stefan Kaeseberg ◽  
Dennis Messerer ◽  
Klaus Holschemacher

Reinforced concrete (RC) columns are often placed under confinement to increase their strength and ductility. Carbon fiber reinforced polymer (CFRP) materials have recently been recognized as favorable confinement systems. At present, a number of national standards and codes dedicated to the design of concrete components strengthened with CFRP in general and CFRP confinement in particular are available. These sets of rules provide design equations for confined reinforced concrete columns with circular and rectangular cross sections. Most of the standards and codes exhibit significant differences, including the used predictive models, limitations, observed effects and covered loading conditions. In this paper, five international standards and design guidelines are introduced and discussed. The purpose is to present a constructive and critical assessment of the state-of-the-art design methodologies available for CFRP confined RC columns and to discuss effects not previously considered properly. Therefore, some recent research efforts and findings from the Leipzig University of Applied Sciences are also introduced. The obtained data is used for a comparative study of the guideline predictive equations. Furthermore, it is shown that some new findings concerning the rupture strength and the maximum strength plus accompanying axial strain of a CFRP confined column are suitable to improve the current guidelines.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5666
Author(s):  
Miloš Mičian ◽  
Jerzy Winczek ◽  
Marek Gucwa ◽  
Radoslav Koňár ◽  
Miloslav Málek ◽  
...  

In this paper, the experimental investigation results of the bead sequence input on geometry, structure, and hardness of surfaced layers after multi-pass weld surfacing are analyzed. Three S355 steel plates surfaced by GMAW (Gas Metal Arc Welding) were tested with three different combinations of six beads. The geometric, structural, and hardness analysis was carried out in the cross-section of the plates in the middle of the welded layers. The dimensions of padded layers, fusion and heat-affected zone, as well as the individual padded weld were evaluated. On the basis of metallographic samples, qualitative and quantitative structure analysis was performed. Hardness measurements in surfacing welds and heat-affected zones in the tested cross-sections of the surfacing layers were carried out. A comparative analysis of structure and hardness, taking into account the thermal implications of the bead sequence, allowed for the formulation of conclusions. Comparative studies have shown differences in properties between heat-affected zones (HAZ) for individual surfacing sequences. These differences were mainly in the dimensions of the surfacing layers, the share of structural components, as well as the uniformity of hardness distributions. Finally, the most favorable sequence in terms of structure and hardness distribution, maximum hardness, and range of hardness has been indicated.


2019 ◽  
Vol 22 (12) ◽  
pp. 2605-2619
Author(s):  
Denghu Jing ◽  
Shuangyin Cao ◽  
Theofanis Krevaikas ◽  
Jun Bian

This article proposes a new connection between a steel bearing and a reinforced concrete column, which is mainly used for provisionally providing jack support in existing reinforced concrete structures. In this suggested connection joint, the steel bearing consisted of two or four symmetrical components assembled by high-strength bolts, which surrounds the reinforced concrete column by a tapered tube and balances the vertical load via the friction force between the tapered tube and concrete, that is, through a self-locking mechanism. The proposed connection joint can be assembled easily at a construction site and can also be disassembled and reused many times. To demonstrate the feasibility of this type of connection joint, a simple test was conducted to illustrate the concept, that is, a total of four medium-scale steel bearing–reinforced concrete column connections with circular cross sections were fabricated and tested under axial loading. The test results showed that the steel bearing–reinforced concrete column connection based on self-locking mechanism exhibited good working performance. Furthermore, a simplified formula to predict the axial stiffness of the connection joint was presented. From the tests and the proposed formula, the most important factors that influence the axial stiffness of this type of connection joint on the premise of an elastic working state are the slope of the tapered tube, the height of the steel bearing, the thickness of the tapered tube, the cross section of the reinforced concrete column, the cross-sectional area of all the connecting bolts, the proportion of the number of top bolts, the area of the top ring plate, and the effective contact area ratio.


2013 ◽  
Vol 139 (6) ◽  
pp. 897-914 ◽  
Author(s):  
M. Di Ludovico ◽  
G. M. Verderame ◽  
A. Prota ◽  
G. Manfredi ◽  
E. Cosenza

Sign in / Sign up

Export Citation Format

Share Document