Based on the Fitted Curve and the Contact Ratio of Ethanol Coupled Preparation of C4 Hydrocarbon Research

2022 ◽  
Vol 11 (01) ◽  
pp. 17-27
Author(s):  
壮 李
Keyword(s):  
2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


1996 ◽  
Vol 118 (3) ◽  
pp. 439-443 ◽  
Author(s):  
Chuen-Huei Liou ◽  
Hsiang Hsi Lin ◽  
F. B. Oswald ◽  
D. P. Townsend

This paper presents a computer simulation showing how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented in this paper was performed by using the NASA gear dynamics code DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low-contact-ratio gears (contact ratio less than two), increasing the contact ratio reduced gear dynamic load. For high-contact-ratio gears (contact ratio equal to or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high-contact-ratio gears minimized dynamic load better than low-contact-ratio gears.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1681
Author(s):  
Yixiang Yuan ◽  
Qinghua Zeng ◽  
Jun Yao ◽  
Yongjun Zhang ◽  
Mengmeng Zhao ◽  
...  

Aiming at the problem of the narrow combustion stability boundary, a conical swirler was designed and constructed based on the concept of fuel distribution. The blowout performance was studied at specified low operating conditions by a combination of experimental testing and numerical simulations. Research results indicate that the technique of the fuel distribution can enhance the combustion stability and widen the boundary of flameout within the range of testing conditions. The increase of the fuel distribution ratio improves the combustion stability but leads to an increase in NOx emission simultaneously. The simulation results show the increase of the fuel distribution ratio causes contact ratio increase in the area of lower reference velocity and gas temperature increase. The increased contact ratio and temperature contribute to the blowout performance enhancement, which is identical to the analysis result of the Damkohler number. The reported work in this paper has potential application value for the development of an industrial burner and combustor with high stability and low NOx emission, especially when the combustion system is required to be stable and efficient at low working conditions.


Author(s):  
Z. Chen ◽  
B. Lei ◽  
Q. Zhao

Based on space curve meshing theory, in this paper, we present a novel geometric design of a circular arc helical gear mechanism for parallel transmission with convex-concave circular arc profiles. The parameter equations describing the contact curves for both the driving gear and the driven gear were deduced from the space curve meshing equations, and parameter equations for calculating the convex-concave circular arc profiles were established both for internal meshing and external meshing. Furthermore, a formula for the contact ratio was deduced, and the impact factors influencing the contact ratio are discussed. Using the deduced equations, several numerical examples were considered to validate the contact ratio equation. The circular arc helical gear mechanism investigated in this study showed a high gear transmission performance when considering practical applications, such as a pure rolling process, a high contact ratio, and a large comprehensive strength.


1993 ◽  
Vol 115 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Hsiang Hsi Lin ◽  
Chinwai Lee ◽  
F. B. Oswald ◽  
D. P. Townsend

This paper presents a numerical procedure for minimizing dynamic effects on high-contact-ratio gears by modification of the tooth profile. The paper examines and compares both linear and parabolic tooth profile modifications of high-contact-ratio gears under various loading conditions. The effects of the total amount of modification and the length of the modification zone were systematically studied at various loads and speeds to find the optimum profile design for minimizing the dynamic load and the tooth bending stress. Parabolic profile modification is preferred over linear profile modification for high-contact-ratio gears because of its lower sensitivity to manufacturing errors. For parabolic modification a greater amount of modification at the tooth tip and a longer modification zone are required. Design charts are presented for high-contact-ratio gears with various profile modifications operating under a range of loads. A procedure is illustrated for using the charts to find the optimum profile design.


2007 ◽  
Vol 539-543 ◽  
pp. 710-715
Author(s):  
Kotaro Kuroda ◽  
Ryoichi Ichino ◽  
Masazumi Okido

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.


Author(s):  
Layue Zhao ◽  
Robert C Frazer ◽  
Brian Shaw

With increasing demand for high speed and high power density gear applications, the need to optimise gears for minimum stress, noise and vibration becomes increasingly important. ISO 6336 contact and bending stress analysis are used to determine the surface load capacity and tooth bending strength but dates back to 1956 and although it is constantly being updated, a review of its performance is sensible. Methods to optimise gear performance include the selection of helix angle and tooth depth to optimise overlap ratio and transverse contact ratio and thus the performance of ISO 6336 and tooth contact analysis methods requires confirmation. This paper reviews the contact and bending stress predicted with four involute gear geometries and proposes recommendations for stress calculations, including a modification to contact ratio factor Zɛ which is used to predict contact stress and revisions to form factor YF and helix angle factor Yβ which are cited to evaluate bending stress. The results suggest that there are some significant deviations in predicted bending and contact stress values between proposal methods and original ISO standard. However, before the ISO standard is changed, the paper recommends that allowable stress numbers published in ISO 6336-5 are reviewed because the mechanisms that initiate bending and contact fatigue have also changed and these require updating.


Author(s):  
Shijing Wu ◽  
Haibo Zhang ◽  
Xiaosun Wang ◽  
Zeming Peng ◽  
Kangkang Yang ◽  
...  

Backlash is a key internal excitation on the dynamic response of planetary gear transmission. After the gear transmission running for a long time under load torque, due to tooth wear accumulation, the backlash between the tooth surface of two mating gears increases, which results in a larger and irregular backlash. However, the increasing backlash generated by tooth accumulated wear is generally neglected in lots of dynamics analysis for epicyclic gear trains. In order to investigate the impact of backlash generated by tooth accumulated wear on dynamic behavior of compound planetary gear set, in this work, first a static tooth surface wear prediction model is incorporated with a dynamic iteration methodology to get the increasing backlash generated by tooth accumulated wear for one pair of mating teeth under the condition that contact ratio equals to one. Then in order to introduce the tooth accumulated wear into dynamic model of compound planetary gear set, the backlash excitation generated by tooth accumulated wear for each meshing pair in compound planetary gear set is given under the condition that contact ratio equals to one and does not equal to one. Last, in order to investigate the impact of the increasing backlash generated by tooth accumulated wear on dynamic response of compound planetary gear set, a nonlinear lumped-parameter dynamic model of compound planetary gear set is employed to describe the dynamic relationships of gear transmission under the internal excitations generated by worn profile, meshing stiffness, transmission error, and backlash. The results indicate that the introduction of the increasing backlash generated by tooth accumulated wear makes a significant influence on the bifurcation and chaotic characteristics, dynamic response in time domain, and load sharing behavior of compound planetary gear set.


Sign in / Sign up

Export Citation Format

Share Document