scholarly journals SEISMOTECTONICS OF THE SOUTHERN MARMARA REGION, NW TURKEY

2017 ◽  
Vol 50 (1) ◽  
pp. 173
Author(s):  
H. Yalçın ◽  
A. Kürçer ◽  
M. Utkucu ◽  
L. Gülen

The Southern Marmara Region is an active deformation area, which is a transition zone between the strike-slip tectonics manifested by the North Anatolian Fault System and the N-S extensional regime of the Aegean Region. We have reviewed tectonic and geological structure of the region, based onseismological studies. We have obtained a total of 37 earthquake moment tensor solutions between 1953 and 2015. In addition, stress tensor analysis has been carried out using 37 earthquake moment tensor solutions. Also long term seismicity were investigated and a,b, Mc values were calculated and mapped. Moment tensor solutions indicate that the source of these earthquakes are mostly NE-trending dextral strike-slip faults and some of them are E-W trending dip-slip normal faults. The stress tensor analysis shows that the direction of the regional compressive stress is NW-SE. The temporal and spatial distrubution of the large earthquakes (1944, 1953, 1964) indicate that the ruptures unilaterally propagate from SW to NE. The 1855 earthquake had been occurred to the east of Manyas Lake. The elapsed time (160 year) and regional stress transfer suggest that the segments to the east of Manyas Lake form a probable seismic gap and this area has a high earthquake risk.

Author(s):  
Lars Ottemöller ◽  
Won-Young Kim ◽  
Felix Waldhauser ◽  
Norunn Tjåland ◽  
Winfried Dallmann

Abstract An earthquake sequence in the Storfjorden offshore area southwest of Spitsbergen in the Svalbard archipelago initiated with a 21 February 2008 magnitude Mw 6.1 event. This area had previously not produced any significant earthquakes, but between 2008 and 2020, a total of ∼2800 earthquakes were detected, with ∼16 of them being of moderate size (ML≥4.0). Applying double-difference relocation to improve relative locations reveals that the activity is linked to several subparallel faults striking southwest–northeast that extend across the entire crust. The southwest–northeast trend is also found as a possible fault plane from regional moment tensor inversion. The solutions range from oblique normal in the center of the cluster to pure strike slip farther away and are consistent with the compressional σ1 axis roughly in the east–west direction and plunging 57°, and the extensional σ3 axis subhorizontal trending north–south. The mainshock fault is steeply dipping to the southeast, but several other faults appear to be near vertical. The existence of oblique, right-lateral strike-slip motion on southwest–northeast-trending faults with a normal component and pure normal faulting events in between suggests transtensional tectonics that in and around Storfjorden result in activation of a complex fault system.


Author(s):  
Copeland W. Cromwell ◽  
Kevin P. Furlong ◽  
Eric A. Bergman ◽  
Harley M. Benz ◽  
Will L. Yeck ◽  
...  

Abstract We present a new catalog of calibrated earthquake relocations from the 2019–2020 Puerto Rico earthquake sequence related to the 7 January 2020 Mw 6.4 earthquake that occurred offshore of southwest Puerto Rico at a depth of 15.9 km. Utilizing these relocated earthquakes and associated moment tensor solutions, we can delineate several distinct fault systems that were activated during the sequence and show that the Mw 6.4 mainshock may have resulted from positive changes in Coulomb stress from earlier events. Seismicity and mechanisms define (1) a west–southwest (∼260°) zone of seismicity comprised of largely sinistral strike-slip and oblique-slip earthquakes that mostly occurs later in the sequence and to the west of the mainshock, (2) an area of extensional faulting that includes the mainshock and occurs largely within the mainshock’s rupture area, and (3) an north–northeast (∼30°)-striking zone of seismicity, consisting primarily of dextral strike-slip events that occurs before and following the mainshock and generally above (shallower than) the normal-faulting events. These linear features intersect within the Mw 6.4 mainshock’s fault plane in southwest Puerto Rico. In addition, we show that earthquake relocations for M 4+ normal-faulting events, when traced along their fault planes, daylight along east–west-trending bathymetric features offshore of southwest Puerto Rico. Correlation of these normal-faulting events with bathymetric features suggests an active fault system that may be a contributor to previously uncharacterized seismic hazards in southwest Puerto Rico.


Geology ◽  
2000 ◽  
Vol 28 (3) ◽  
pp. 255 ◽  
Author(s):  
Eric Cowgill ◽  
An Yin ◽  
Wang Xiao Feng ◽  
Zhang Qing

Author(s):  
Patricia Martínez-Garzón ◽  
Virginie Durand ◽  
Stephan Bentz ◽  
Grzegorz Kwiatek ◽  
Georg Dresen ◽  
...  

Abstract Various geophysical observations show that seismic and aseismic slip on a fault may occur concurrently. We analyze microseismicity recordings from a temporary near-fault seismic network and borehole strainmeter data from the eastern Marmara region in northwest Turkey to track seismic and aseismic deformation around the hypocentral region of an Mw 4.5 earthquake in 2018. A slow transient is observed that lasted about 30 days starting at the time of the Mw 4.5 event. We study about 1200 microseismic events that occurred during 417 days after the Mw 4.5 event around the mainshock fault rupture. The seismicity reveals a strong temporal clustering, including four episodic seismic sequences, each containing more than 30 events per day. Seismicity from the first two sequences displayed typical characteristics driven by aseismic slip and/or fluids, such as the activation of a broader region around the mainshock and swarm-like topology. The third and fourth sequences correspond to typical mainshock–aftershock sequences. These observations suggest that slow slip and potentially fluid diffusion along the fault plane could have controlled the seismicity during the initial 150 days following the Mw 4.5 event. In contrast, stress redistribution and breaking of remaining asperities may have caused the activity after the initial 150 days. Our observation from a newly installed combined dense seismic and borehole strainmeter network follows an earlier observation of a slow transient occurring in conjunction with enhanced local seismic moment release in the same region. This suggests a frequent interaction of seismic and aseismic slip in the Istanbul–Marmara seismic gap.


1970 ◽  
Vol 60 (5) ◽  
pp. 1669-1699 ◽  
Author(s):  
Leonardo Seeber ◽  
Muawia Barazangi ◽  
Ali Nowroozi

Abstract This paper demonstrates that high-gain, high-frequency portable seismographs operated for short intervals can provide unique data on the details of the current tectonic activity in a very small area. Five high-frequency, high-gain seismographs were operated at 25 sites along the coast of northern California during the summer of 1968. Eighty per cent of 160 microearthquakes located in the Cape Mendocino area occurred at depths between 15 and 35 km in a well-defined, horizontal seismic layer. These depths are significantly greater than those reported for other areas along the San Andreas fault system in California. Many of the earthquakes of the Cape Mendocino area occurred in sequences that have approximately the same magnitude versus length of faulting characteristics as other California earthquakes. Consistent first-motion directions are recorded from microearthquakes located within suitably chosen subdivisions of the active area. Composite fault plane solutions indicate that right-lateral movement prevails on strike-slip faults that radiate from Cape Mendocino northwest toward the Gorda basin. This is evidence that the Gorda basin is undergoing internal deformation. Inland, east of Cape Mendocino, a significant component of thrust faulting prevails for all the composite fault plane solutions. Thrusting is predominant in the fault plane solution of the June 26 1968 earthquake located along the Gorda escarpement. In general, the pattern of slip is consistent with a north-south crustal shortening. The Gorda escarpment, the Mattole River Valley, and the 1906 fault break northwest of Shelter Cove define a sharp bend that forms a possible connection between the Mendocino escarpment and the San Andreas fault. The distribution of hypocenters, relative travel times of P waves, and focal mechanisms strongly indicate that the above three features are surface expressions of an important structural boundary. The sharp bend in this boundary, which is concave toward the southwest, would tend to lock the dextral slip along the San Andreas fault and thus cause the regional north-south compression observed at Cape Mendocino. The above conclusions support the hypothesis that dextral strike-slip motion along the San Andreas fault is currently being taken up by slip along the Mendocino escarpment as well as by slip along northwest trending faults in the Gorda basin.


2021 ◽  
Author(s):  
Duna Roda-Boluda ◽  
Taylor Schildgen ◽  
Hella Wittmann-Oelze ◽  
Stefanie Tofelde ◽  
Aaron Bufe ◽  
...  

<p>The Southern Alps of New Zealand are the expression of the oblique convergence between the Pacific and Australian plates, which move at a relative velocity of nearly 40 mm/yr. This convergence is accommodated by the range-bounding Alpine Fault, with a strike-slip component of ~30-40 mm/yr, and a shortening component normal to the fault of ~8-10 mm/yr. While strike-slip rates seem to be fairly constant along the Alpine Fault, throw rates appear to vary considerably, and whether the locus of maximum exhumation is located near the fault, at the main drainage divide, or part-way between, is still debated. These uncertainties stem from very limited data characterizing vertical deformation rates along and across the Southern Alps. Thermochronology has constrained the Southern Alps exhumation history since the Miocene, but Quaternary exhumation is hard to resolve precisely due to the very high exhumation rates. Likewise, GPS surveys estimate a vertical uplift of ~5 mm/yr, but integrate only over ~10 yr timescales and are restricted to one transect across the range.</p><p>To obtain insights into the Quaternary distribution and rates of exhumation of the western Southern Alps, we use new <sup>10</sup>Be catchment-averaged erosion rates from 20 catchments along the western side of the range. Catchment-averaged erosion rates span an order of magnitude, between ~0.8 and >10 mm/yr, but we find that erosion rates of >10 mm/yr, a value often quoted in the literature as representative for the entire range, are very localized. Moreover, erosion rates decrease sharply north of the intersection with the Marlborough Fault System, suggesting substantial slip partitioning. These <sup>10</sup>Be catchment-averaged erosion rates integrate, on average, over the last ~300 yrs. Considering that the last earthquake on the Alpine Fault was in 1717, these rates are representative of inter-seismic erosion. Lake sedimentation rates and coseismic landslide modelling suggest that long-term (~10<sup>3</sup> yrs) erosion rates over a full seismic cycle could be ~40% greater than our inter-seismic erosion rates. If we assume steady state topography, such a scaling of our <sup>10</sup>Be erosion rate estimates can be used to estimate rock uplift rates in the Southern Alps. Finally, we find that erosion, and hence potentially exhumation, does not seem to be localized at a particular distance from the fault, as some tectonic and provenance studies have suggested. Instead, we find that superimposed on the primary tectonic control, there is an elevation/temperature control on erosion rates, which is probably transient and related to frost-cracking and glacial retreat.</p><p>Our results highlight the potential for <sup>10</sup>Be catchment-averaged erosion rates to provide insights into the magnitude and distribution of tectonic deformation rates, and the limitations that arise from transient erosion controls related to the seismic cycle and climate-modulated surface processes.</p><p> </p><p> </p>


1995 ◽  
Vol 85 (3) ◽  
pp. 705-715
Author(s):  
Mark Andrew Tinker ◽  
Susan L. Beck

Abstract Regional distance surface waves are used to study the source parameters for moderate-size aftershocks of the 25 April 1992 Petrolia earthquake sequence. The Cascadia subduction zone had been relatively seismically inactive until the onset of the mainshock (Ms = 7.1). This underthrusting event establishes that the southern end of the North America-Gorda plate boundary is seismogenic. It was followed by two separate and distinct large aftershocks (Ms = 6.6 for both) occurring at 07:41 and 11:41 on 26 April, as well as thousands of other small aftershocks. Many of the aftershocks following the second large aftershock had magnitudes in the range of 4.0 to 5.5. Using intermediate-period surface-wave spectra, we estimate focal mechanisms and depths for one foreshock and six of the larger aftershocks (Md = 4.0 to 5.5). These seven events can be separated into two groups based on temporal, spatial, and principal stress orientation characteristics. Within two days of the mainshock, four aftershocks (Md = 4 to 5) occurred within 4 hr of each other that were located offshore and along the Mendocino fault. These four aftershocks comprise one group. They are shallow, thrust events with northeast-trending P axes. We interpret these aftershocks to represent internal compression within the North American accretionary prism as a result of Gorda plate subduction. The other three events compose the second group. The shallow, strike-slip mechanism determined for the 8 March foreshock (Md = 5.3) may reflect the right-lateral strike-slip motion associated with the interaction between the northern terminus of the San Andreas fault system and the eastern terminus of the Mendocino fault. The 10 May aftershock (Md = 4.1), located on the coast and north of the Mendocino triple junction, has a thrust fault focal mechanism. This event is shallow and probably occurred within the accretionary wedge on an imbricate thrust. A normal fault focal mechanism is obtained for the 5 June aftershock (Md = 4.8), located offshore and just north of the Mendocino fault. This event exhibits a large component of normal motion, representing internal failure within a rebounding accretionary wedge. These two aftershocks and the foreshock have dissimilar locations in space and time, but they do share a north-northwest oriented P axis.


Sign in / Sign up

Export Citation Format

Share Document