scholarly journals Η επίδραση της γεωλογίας και της τεκτονικής στην εξέλιξη του υδρογραφικού δικτύου και της υδρολογικής λεκάνης του ποταμού Πάμισου της Θεσσαλίας.

2005 ◽  
Vol 38 ◽  
pp. 86
Author(s):  
Κ. ΒΟΥΒΑΛΙΔΗΣ ◽  
Α. ΣΦΕΙΚΟΣ ◽  
Θ. ΠΑΡΑΣΧΟΥ ◽  
Χ. ΚΕΧΑΓΙΑ ◽  
Δ. ΨΩΜΙΑΔΗΣ

River Pamisos is a main tributary of Pinios River, draining the SW part of the Thessaly catchment area. The river's drainage basin comprises part of the plain as well as of the mountainous terrain that bounds the broader Thessaly Plain. In this paper we present the results of both qualitative and quantitative analyses of the drainage network and morphology through processing of digitized data with GIS software. Quantitative measurements allowed objectively to compare different landforms and to calculate less straightforward parameters (geomorphic indices) that may be useful for the identifying particular characteristics of the area, such as the level of tectonic activity and geologic conffiocm the analysis of the hydrographie network values for the D and F parameters were calculated. In addition, terrain analysis resulted in useful conclusions about morphologic indices, derivation of hypsographic curves and integrals for the entire study area. Similarly, the morphological study of fluvial terraces together with that of sub-basins resulted in determination of erosive activity of the river. Finally, the analysis of certain morphometric indices obtained from the hydrographie network and morphology subsequent analyses was used to define the influence of geologic formations and tectonics upon the evolution of the river system. One of the major results of this paper is that the shape of the hypsometric curve and the calculation of the hypsometric integral indicate a mature stage of development for the Pamissos River drainage basin. It is generally known that the landscape in recently developed - active orogens is shaped mainly by two factors, tectonic activity and surface erosion. If we accept that the denudation – erosion rates in Hellenic orogen are approximately the same, then the lack of landmass (indicated by hypsometric integral) should implicate a basin expansion due to tectonic control.

2018 ◽  
Vol 91 (2) ◽  
pp. 472-492 ◽  
Author(s):  
Ángel Soria-Jáuregui ◽  
Francisco Jiménez-Cantizano ◽  
Loreto Antón

AbstractThe Ebro catchment includes a continental foreland basin that underwent an endorheic–exorheic transition. Morphometric studies, including hypsometric curves, hypsometric integrals, asymmetry factor, mountain front sinuosity, normalised stream-length gradient, and normalised concavity indices for the Ebro River and 32 of its tributaries, show the signals of transient response to this major drainage change. The Ebro River, its upper catchment tributaries, and the Pyrenean tributaries have concave-up longitudinal profiles, concave hypsometric curves, and low hypsometric integrals, parameters typical of deeply dissected basins. This suggests a mature stage of development, controlled by the shift of the base level to the Mediterranean Sea. Iberian Range tributaries display low concavity profiles with numerous knickpoints and high values of hypsometric integral, indicating a transient state as a response to tectonic uplift, ratified by the values of mountain front sinuosity surrounding the basin.


2021 ◽  
Vol 10 (11) ◽  
pp. 784
Author(s):  
Abdelrahman Khalifa ◽  
Bashar Bashir ◽  
Abdullah Alsalman ◽  
Nazik Öğretmen

The Abu-Dabbab area, located in the central part of the Egyptian Eastern Desert, is an active seismic region where micro-earthquakes (≈ML < 2.0) are recorded regularly. Earthquake epicenters are concentrated along an ENE–WSW trending pattern. In this study, we used morphological indexes, including the valley floor width-to-valley floor height ratio (Vf), mountain front sinuosity (Smf), the asymmetry factor index (Af), the drainage basin shape index (Bs), the stream length–gradient index (SL), hypsometric integral (Hi) water drainage systems, and a digital elevation model analysis, to identify the role of tectonics. These indexes were used to define the relative tectonic activity index (RTAI), which can be utilized to distinguish low (RTAI < 1.26), moderate (RTAI = 1.26–1.73), and high (RTAI > 1.73) tectonic activity signals all over the study area. Firstly, our results indicate low to medium tectonic activity and general anomaly patterns detected along the major tectonic zones of the study area. Secondly, based on most of the low to medium tectonic activity distributed in the study area and the detected anomalies, we discuss two potential drivers of the seismicity in the Abu-Dabbab area, which are fault-controlled and deep-rooted activities.


Author(s):  
Z. H. Liu ◽  
L. Han ◽  
T. T. Wu ◽  
C. Y. Du ◽  
N. Cao

Abstract. The morphology of watershed is the most intuitive information carrier to reflect regional tectonic activity, surface erosion and morphologic evolution. Active tectonic and fluvial system play a significant role in patterns and characters of regional morphology. Taking twenty-nine tributaries of the upper reaches of the Weihe River as the main study objects, four parameters, such as gully density (GD), basin topography ratio (BTR), roundness ratio (RR), river longitudinal profile fitting exponent (RLPFE), etc., were used to quantitatively analyse the topographic characteristics in this area. To reveal the main cause of the characteristics, the hypsometric integral (HI) were also applied in this area. The results showed that: (1) There is a positive linear function between basin topography ratio (BTR) and mean slope, and the mean values of four indexes in northern channels are smaller than southern channels; (2) The mean HI value is 0.44, indicating that the main topographic characteristics of this area is in maturity, which is in the transitional period of adjustment of the deep erosion and uplift movement; (3) The main cause of this topographic changes is tectonic. These results are consistent with other geological background, and will enrich regional basin morphology research and tectonic activity evaluation, provide important basic data for regional disaster prediction and analysis of soil and water loss.


Soil erosion poses a serious threat over the maintenance activities of a reservoir and its watershed. This study has been taken us to assess the extent of soil erosion in the watersheds of the Siruvani Reservoir located in the district of Kerala. Two methods namely, Universal Soil Loss equation (USLE) and Hypsometric curve methods are adapted in this study. Hypsometry of watersheds (area-elevation analysis) has generally been used to reveal the stages of geomorphic development (stabilized, mature and young). The watersheds of Siruvani Reservoir were delineated from the generated Digital Elevation Model (DEM) using Geographic Information System (GIS). Various set of data like land use map, rainfall and soil map have been used for this analysis to generate five factors namely finally, the soil erosion risk map was created to identify the regions which are susceptible to erosion. Hypsometric analysis deals with measurement of the interrelationships between basin area and altitude of basin which has been used to understand the influence of various factors such as climate, geology and tectonic changes. GIS provides advanced tools to obtain hypsometric information and also helps to estimate the associated parameters of landforms. The entire study area has been sub-divided into 5 watersheds for hypsometric analysis and their area ranges from 1.77 to 6.94 km2. The hypsometric curve of the whole the watersheds reflects the mature geomorphic terrain whereas hypsometric integral indicates that the drainage basin has already eroded per cent of land masses. These findings would emphasize the importance of soil and water conservation measures to be taken up in the Siruvani watersheds for controlling further erosion, reducing the sediment outflows and conserve water.


2021 ◽  
Vol 36 (4) ◽  
pp. 85-105
Author(s):  
Edi Hidayat ◽  
Dicky Muslim ◽  
Zufialdi Zakaria ◽  
Haryadi Permana ◽  
Dimas Aryo Wibowo

Karangsambung, located in Central Java, Indonesia has complex geological conditions of the tectonic evolution of Java Island due to the subduction process of the India-Australia plate with the Eurasian plate in the Cretaceous-Paleocene. The tectonic movements in the subduction zone have resulted in diverse geological structures and rock types and impact the morphological shape of the study area. The level of tectonic activity in the study area can be determined using a tectonic geomorphological approach. A digital elevation model and geographic information systems are used for geomorphic data processing. Geological data observations were also carried out in the form of river terraces. Seven geomorphic index parameters have been calculated to determine the youngest tectonic activity through the relative tectonic activity index (IAT) of the study area: the ratio of the valley floor width to the valley height, the drainage basin asymmetry, the river gradient-length index, the basin shape index, mountain front sinuosity, drainage density, and the hypsometric integral/hypsometric curve. The IAT score is divided into four classes which are class 1 (0%) very highly, class 2 (13%) highly, class 3 (56%) moderately, and class 4 (31%) low. The IAT shows that the research area is categorized as an active tectonic area so that the morphology formed is more influenced by tectonic activity than erosion. Geological data analysis on uplifted and deformed river terrace outcrops shows that the study area is affected by neotectonic activity.


2018 ◽  
Vol 26 (8) ◽  
pp. 217-229
Author(s):  
Zeyad Jameel Al- Saedi ◽  
Mustafa Rashead Al-Obaidi

Morphological and morphotectonic analysis have been used to obtain information that influences basis. The study area includes the Euphrates river basin in Iraq. Tectonically this area within a Stable shelf, The Stable Shelf which covers the vast majority of the focal south and west of Iraq reaches out into Syria and Jordan and Southwards into Kuwait and Saudi Arabia. It is separated in Iraq into three considerable structural zones. Discrimination of morphotectonic indices of Euphrates basin by using sevenindices. The Euphrates basin (main basin) was divided into four sub-basin (s.b) Wadi Horan, Wadi Ubaiyidh, Shuab Hwaimy, and Shuab Qusair. Which has been completed for each drainage basin utilizing remote sensing and GIS techniques? So as to identify the tectonic activity, different indices including Drainage density (D), Sinuosity index (S), Hypsometric integral (HI), Drainage basin asymmetry (AF), Basin Shape (BS), Transverse Topographic Symmetry (T) and Active tectonic index (Iat). The study demonstrates that the intensity of tectonic activities in different parts of the basin and sub-basins are different. The values of Drainage density (D) main basin and sub-basins are in high classes which mean that the study area has resultant of slight or impermeable subsurface material, little vegetation as well as a good discharge for water and sediments. The Sinuosity index (S) of all study area are sinuous and its semi-equilibrium. Hypsometric integral (HI) of Horan, Ubaiyidh and shuab Hwaimy sub-basins shows high values of HI which means high rates of geological erosion while the shuab Qusair and main basin shows moderate of erosion rates, HI high values shows that study area is tectonically uplifted. According to the calculation of Drainage basin asymmetry (AF) the study area reflects inactive tectonic activity. The Basin Shape (BS) all of the basins are in third class and it reflects inactive tectonic activity. After computing Transverse Topographic Symmetry (T) index in the area of investigate, the outcome demonstrate that all the subbasins lie in low active tectonics except wadi Horan and the main basin was moderate active tectonics. Based on an Active tectonic index (Iat) all the basins were moderate active tectonics except Horan subbasin is active tectonically. These basins have evolved as a result of plate movements, subsidence, uplift and various erosional processes. The study shows the variable relationship between faulting and valleys but most of the trends of faults are subparallel to the Euphrates River. Faults orientations in the study area are parallel to NE-SW direction and NW-SE direction. And also the type of drainage network in the study area which is varied from dendritic to parallel with SW-NE trending and its indicate that study area may be structurally controlled.


Soil erosion poses a serious threat over the maintenance activities of a reservoir and its watershed. This study has been taken us to assess the extent of soil erosion in the watersheds of the Siruvani Reservoir located in the district of Kerala. Two methods namely, Universal Soil Loss equation (USLE) and Hypsometric curve methods are adapted in this study. Hypsometry of watersheds (area-elevation analysis) has generally been used to reveal the stages of geomorphic development (stabilized, mature and young). The watersheds of Siruvani Reservoir were delineated from the generated Digital Elevation Model (DEM) using Geographic Information System (GIS). Various set of data like land use map, rainfall and soil map have been used for this analysis to generate five factors namely finally, the soil erosion risk map was created to identify the regions which are susceptible to erosion. Hypsometric analysis deals with measurement of the interrelationships between basin area and altitude of basin which has been used to understand the influence of various factors such as climate, geology and tectonic changes. GIS provides advanced tools to obtain hypsometric information and also helps to estimate the associated parameters of landforms. The entire study area has been sub-divided into 5 watersheds for hypsometric analysis and their area ranges from 1.77 to 6.94 km2. The hypsometric curve of the whole the watersheds reflects the mature geomorphic terrain whereas hypsometric integral indicates that the drainage basin has already eroded per cent of land masses. These findings would emphasize the importance of soil and water conservation measures to be taken up in the Siruvani watersheds for controlling further erosion, reducing the sediment outflows and conserve water


2001 ◽  
Vol 34 (1) ◽  
pp. 397
Author(s):  
Ε. ΛΥΚΟΥΔΗ

The scope of this study work is to give an insight into the dynamic processes which shape the relief in the drainage basin of the upper reaches the Acheloos river, so that the geomorphological and geodynamical evolution of the region in the past can be approached, together with a possible prediction. For this reason, the relationships between the relief and the endogenic and exogenic factors are sought. The investigated area is made up of geological formations that belong to the zones: "Ionian" (inner Ionian zone), "Gavrovo", "Pindos" and "Hyperpindos". There are also younger rocks (postalpine formations), together with some volcanic rocks. The main stream segment of Acheloos river was formed in the Upper-Middle Miocene, after the deposition of the flysch of "Gavrovo" and the tectonism of the zone. The structures were cut to a large extent by trace-slip faults, striking ENE-WSW, during the Middle-Upper Miocene. At the same time (Lower Miocene - Plio-Quaternary), in NW-Greece, is observed a horizontal clockwise rotation (45°). Finally, the region shows an expanding movement from North to South. Due to the above tectonic activity, the drainage basin shows a monoclinic structure with a westward displacement of the drainage pattern. The displacement increases from North to South. The displacement of the drainage pattern is also favoured by the presence of erodible rocks in the western part (flysch of "Gavrovo") and the general eastward dip of the strata. Neotectonic activity controls the river up to date, as it is inferred from the orientation of the stream segments, which follow the tectonic structure (lithological boundaries, faults, thrusts). The drainage pattern appears to be in an early mature stage. According to the quantitative geomorphological analysis data, the drainage pattern (mainly the west part of it) is in an unstable dynamic status. During Plio-Quaternary there were a few rejuvenating episodes, due to tectonic and climate changes. The present rejuvenated stage, which is more obvious in the southwestern part of the investigated area, is supported by morphotectonic data. Among them, the most remarkable are: a)the steep slopes (30-60 %), b)the negative deviation of "cummulative" area compared to ideal values, c)the slope flexions, which separate the new lower level from the old higher one.


2018 ◽  
Vol 39 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Saif Said ◽  
Rabab Siddique ◽  
Mohammad Shakeel

AbstractMorphometric analysis of any watershed and its prioritization is one of the important aspects of planning for implementation of management programmes. Present study evaluates the quantitative morphometric characteristics of Nagmati River watershed in Kutch District of Gujarat by utilizing Cartosat-1 data (CartoDEM). In all 19 aerial and 6 linear morphometric parameters of the watershed have been evaluated. Drainage map of the study area reveals a dendritic drainage pattern with sixth order stream network comprising 492 numbers of streams and confining an area of 129.41 km2. Mean bifurcation ratio (Rb) and stream length ratio (RL) of the watershed evaluated are 3.44 and 0.54 respectively which corroborates the fact that drainage pattern is not influenced by the geological evolutions and disturbances in the recent past. The drainage density of 2.68 kmꞏkm−2 indicates impermeable subsoil material with sparse vegetation and moderate to low relief. Elongation ratio of 0.956 infers the basin to be closer to a circular shape. The geologic stage of development and erosion proneness of the watershed is quantified by hypsometric integral (HI) bearing value as 0.5, indicating the landscape to be uniform and in early mature stage. The study prioritizes eight sub-watersheds as high, medium and low for taking up soil and water conservation activities. Hence, remote sensing applications proved to be highly useful in extracting the precise data for the evaluation and analysis of watershed characteristics.


Author(s):  
D., A., L., A. Putri

Tectonic activity in an area could result in various impacts such as changes in elevation, level of slope percentages, river flow patterns and systems, and the formation of geological structures both locally and regionally, which will form a new landscape. The tectonic activity also affects the stratigraphic sequences of the area. Therefore, it is necessary to study morphotectonic or landscape forms that are influenced by active tectonic activities, both those occur recently and in the past. These geological results help provide information of the potential of natural resources in and around Tanjung Bungo area. Morphological data are based on three main aspects including morphogenesis, morphometry, and morphography. The data are collected in two ways, the first is field survey by directly observing and taking field data such as measuring geological structures, rock positions, and outcrop profiles. The second way is to interpret them through Digital Elevation Model (DEM) and aerial photographs by analyzing river flow patterns and lineament analysis. The field measurement data are processed using WinTensor, Dips, and SedLog Software. The supporting data such as Topographic Maps, Morphological Elevation Maps, Slope Maps, Flow Pattern Maps, and Lineament Maps are based on DEM data and are processed using ArcGis Software 10.6.1 and PCI Geomatica. Morphotectonically, the Tanjung Bungo area is at a moderate to high-class level of tectonic activity taken place actively resulted in several joints, faults, and folds. The formation of geological structures has affected the morphological conditions of the area as seen from the development of steep slopes, structural flow patterns such as radial, rectangular, and dendritic, as well as illustrated by rough surface relief in Tanjung Bungo area. This area has the potential for oil and gas resources as indicated by the Telisa Formation, consisting of calcareous silts rich in planktonic and benthonic fossils, which may be source rocks and its contact with the Menggala Formation which is braided river system deposits that could be good reservoirs. Further research needs to be done since current research is only an interpretation of surface data. Current natural resources being exploited in Tanjung Bungo region are coals. The coals have thicknesses of 5-7 cm and are classified as bituminous coals.


Sign in / Sign up

Export Citation Format

Share Document