scholarly journals Geomorphic evolution of the upper reaches of the drainage basin of Acheloos river

2001 ◽  
Vol 34 (1) ◽  
pp. 397
Author(s):  
Ε. ΛΥΚΟΥΔΗ

The scope of this study work is to give an insight into the dynamic processes which shape the relief in the drainage basin of the upper reaches the Acheloos river, so that the geomorphological and geodynamical evolution of the region in the past can be approached, together with a possible prediction. For this reason, the relationships between the relief and the endogenic and exogenic factors are sought. The investigated area is made up of geological formations that belong to the zones: "Ionian" (inner Ionian zone), "Gavrovo", "Pindos" and "Hyperpindos". There are also younger rocks (postalpine formations), together with some volcanic rocks. The main stream segment of Acheloos river was formed in the Upper-Middle Miocene, after the deposition of the flysch of "Gavrovo" and the tectonism of the zone. The structures were cut to a large extent by trace-slip faults, striking ENE-WSW, during the Middle-Upper Miocene. At the same time (Lower Miocene - Plio-Quaternary), in NW-Greece, is observed a horizontal clockwise rotation (45°). Finally, the region shows an expanding movement from North to South. Due to the above tectonic activity, the drainage basin shows a monoclinic structure with a westward displacement of the drainage pattern. The displacement increases from North to South. The displacement of the drainage pattern is also favoured by the presence of erodible rocks in the western part (flysch of "Gavrovo") and the general eastward dip of the strata. Neotectonic activity controls the river up to date, as it is inferred from the orientation of the stream segments, which follow the tectonic structure (lithological boundaries, faults, thrusts). The drainage pattern appears to be in an early mature stage. According to the quantitative geomorphological analysis data, the drainage pattern (mainly the west part of it) is in an unstable dynamic status. During Plio-Quaternary there were a few rejuvenating episodes, due to tectonic and climate changes. The present rejuvenated stage, which is more obvious in the southwestern part of the investigated area, is supported by morphotectonic data. Among them, the most remarkable are: a)the steep slopes (30-60 %), b)the negative deviation of "cummulative" area compared to ideal values, c)the slope flexions, which separate the new lower level from the old higher one.

2021 ◽  
Vol 5 (1) ◽  
pp. 12-23
Author(s):  
Fawzi Moftah ◽  
MacTar Mohamed ◽  
Alzubair Abousaif

The present study has been carried out to analyze the relationship between faulting and geomorphology of the Wadi Atyaruh to reveal the effect of structures on the morphology and distribution of the different karst features. Geographical Information System (GIS) and Remote Sensing (RS) techniques were applied to investigate morphological and topographic characteristics of Wadi Atyaruh, based on ASTER Global Digital Elevation Model (ASTER GDEM) Version 3 (V3) data. Dextral strike-slip fault is the main faulting type in the valley. Conjugate faults system has been found in the study area, which reveals the orientations of the principal stresses. Wadi Atyaruh consists mainly of Dernah formations (Eocene) and Quaternary deposits. Two types of Karren have been recognized, they are Rillen karren and solution basis which are well distributed in Darnah formation. Caves are found in the Darnah formation, the passages and chambers of these caves show a phreatic bedding plane, elliptical shape, laminar profiles, and rectangular and rounded top vadose profiles. The drainage system of this valley is sub-parallel drainage pattern to dendritic drainage pattern, indicating that the area has affected by strike-slip movement (Dextral), joints and it has steep slopes. interpretation of DEM of study area indicate moderate and high relief, low run off and high infiltrations due to the nature of the fracture carbonate rock, the basin have early mature stage of erosion development. Geomorphic parameters such as hill shade, slop, aspect, area shaded and elevation maps, was produced to describe geomorphic forms and processes of the Wadi Atyaruh. The complete morphometric analysis of drainage basin indicates that the given area is having good groundwater prospect.


2021 ◽  
Vol 8 (1) ◽  
pp. 33-62
Author(s):  
Nisha Chettri ◽  
Karan Nayak

The Shillong Plateau is characterized by multiple phases of deformation and number of prominent sets joints/fracture system. The Southern Shillong Plateau unlike the northern part is highly dissected by the scarp faces which are mostly erosional. The area is characterized by deep incising river networks which cuts across many lithological units. To understand the factors influencing the drainage characteristic of the area and landscape development, the present study has been done in context of morphometry, geomorphology and geology of the drainage basin. Fifteen sub basins of 4th order have been selected from the Um Sohrynkew River basin. Drainage morphometry, indices of active tectonism, geology and tectonics and landform features have been worked out for better evaluation of drainage characteristics. The study area forms part of the Meghalaya Precambrian province of upper Proterozoic age. The southern border of the Shillong Plateau is demarcated by Dauki (Also known as Dawki) fault which is a prominent structural lineament. It consists of at least four E-W trending normal faults with occasional reversal. The segment of the Dauki fault in the study area is believed to be active. The present study focuses on the drainage network and the landscape development of the study area where a very strong relationship has been observed between the lithology and structure together with the tectonic activity influencing the drainage pattern in the area.


2005 ◽  
Vol 38 ◽  
pp. 86
Author(s):  
Κ. ΒΟΥΒΑΛΙΔΗΣ ◽  
Α. ΣΦΕΙΚΟΣ ◽  
Θ. ΠΑΡΑΣΧΟΥ ◽  
Χ. ΚΕΧΑΓΙΑ ◽  
Δ. ΨΩΜΙΑΔΗΣ

River Pamisos is a main tributary of Pinios River, draining the SW part of the Thessaly catchment area. The river's drainage basin comprises part of the plain as well as of the mountainous terrain that bounds the broader Thessaly Plain. In this paper we present the results of both qualitative and quantitative analyses of the drainage network and morphology through processing of digitized data with GIS software. Quantitative measurements allowed objectively to compare different landforms and to calculate less straightforward parameters (geomorphic indices) that may be useful for the identifying particular characteristics of the area, such as the level of tectonic activity and geologic conffiocm the analysis of the hydrographie network values for the D and F parameters were calculated. In addition, terrain analysis resulted in useful conclusions about morphologic indices, derivation of hypsographic curves and integrals for the entire study area. Similarly, the morphological study of fluvial terraces together with that of sub-basins resulted in determination of erosive activity of the river. Finally, the analysis of certain morphometric indices obtained from the hydrographie network and morphology subsequent analyses was used to define the influence of geologic formations and tectonics upon the evolution of the river system. One of the major results of this paper is that the shape of the hypsometric curve and the calculation of the hypsometric integral indicate a mature stage of development for the Pamissos River drainage basin. It is generally known that the landscape in recently developed - active orogens is shaped mainly by two factors, tectonic activity and surface erosion. If we accept that the denudation – erosion rates in Hellenic orogen are approximately the same, then the lack of landmass (indicated by hypsometric integral) should implicate a basin expansion due to tectonic control.


2013 ◽  
Vol 46 ◽  
Author(s):  
Pramila Shrestha ◽  
Naresh Kazi Tamrakar

Morphometric analysis of a watershed provides a quantitative description of the drainage system which is an important aspect of characterization of watershed. The analysis requires measurement of linear features, aerial aspects, gradient of channel network and contributing ground slopes of the drainage basin. The morphometric characteristics at the watershed-scale may contain important information regarding its formation and development because all hydrologic and geomorphic processes occur within the watershed. In this study morphometric property of the Bagmati River Basin (BRB) was investigated using different morphometric attributes and hypsometric analysis in order to investigate geomorphic development of the river basin, in an active tectonic zone. DEM has been prepared from the contour and spot height data using digital topographic maps of 1:25000-scale acquired from the Department of Survey, Nepal. The main stem Bagmati River is the eighth order perennial river that stretches for 206 km with an elongated catchment of area 3761 sq. km. It consists of 39 sub-basins of fourth order and higher. The study shows that the drainage system of the BRB is attaining a mature stage from a youth stage from lower order streams to the higher order streams in geomorphic development process. Some exceptions occurred at higher order stream segments, where drainage development seems to control by structure and lithology. According to the analytical results, erosional stage and level of tectonic activity of sub-basins differ from each other. Generally, the lithology and geological structure seems to control the drainage texture and relief of the BRB. The river system within the Kathmandu Valley is attaining maturity having meandering channels with wide flood plains, whereas rivers of the Lesser Himalaya and the Siwaliks are at youth stage with erosional potential. The downstream part of higher order stream segments are in mature stage having potential for lateral erosion and meander migration. Therefore, the Bagmati River stretch, especially the eight order one poses vulnerability to bank erosion.


2020 ◽  
Vol 13 (22) ◽  
Author(s):  
Ziyad Elias ◽  
Varoujan K. Sissakian ◽  
Nadhir Al-Ansari

AbstractGeomorphological evaluation was carried out for three drainage basins named Hareer, Dwaine, and Hijran, which are tributaries of the Greater Zab River in the northern part of Erbil Governorate, the Iraqi Kurdistan Region, north Iraq. The exposed rocks in the three basins are mainly clastic rocks (sandstone, claystone, and conglomerate, with subordinate gypsum and limestone beds). However, in the uppermost parts of the basins, thick and massive carbonate rocks are exposed. Tectonically, the three basins are located in the Low Folded and High Folded Zones, which belong to the Zagros Fold–Thrust Belt. The main aim of the current study is to deduce the tectonic activity of the area occupied by the studied three basins. We have used and interpreted Radar Topography Mission (SRTM) data to perform the geomorphological evaluation. Different geomorphological indices and forms were used to deduce the tectonic activity of the area occupied by the three basins. Accordingly, seven orders of streams were identified in the three basins. The number of the streams with low order (i.e., 1) joining with higher order (i.e., 6 and 7) is considerably higher in the three basins. The Hat values of the three basins are 12,971, 10,479, and 7014 in Hareer, Dwaine, and Hijran basins, respectively. The values of hierarchical anomaly index (Δa) of the three basins are 1.87, 1.35, and 2.37 in Hareer, Hijran, and Dwaine basins, respectively. It was observed that the shape of Hareer and Shakrook anticlines has a significant impact on the main trunk of the channel. Therefore, when an anticline and syncline are close to each other (due to thrust faulting), then the hierarchical anomaly increases because the river trunk receives a lot of first-order streams, e.g., in Dwaine and Hijran basins. The lateral growth in the eastern part of Safin anticline had caused increasing of the Δa. The increased hierarchical anomaly index is attributed to the existence of faults and lineaments, which represent weakness zones. The hypsometric curves of the three basins have a typical shape of old stage with rejuvenation in their central and terminal portions which is changed into mature stage, most probably due to the local uplift which is caused by normal, thrust, and strike–slip (oblique) faults which exist in the study area and the near surroundings. The Bs and Hat values in Hareer, Dwaine, and Hijran basins indicate that the basins exhibit low, medium, and high tectonic activity, respectively.


2020 ◽  
Author(s):  
Nongmaithem Lakhan Singh ◽  
Athokpam Krishnakanta Singh

<p>We present zircon U-Pb ages and whole-rock geochemistry along with mineral chemistry of the Khardung volcanic rocks outcropped in the northern margin of the Ladakh batholith in order to constrain their origin and tectono-magmatic history. These volcanic rocks are sandwiched between the Ladakh batholith in the south and the Shyok suture zone in the north and span a continuous compositional range from basalt to rhyolite, although mafic rocks are minor and intermediate to felsic rocks are volumetrically predominant. New zircon U-Pb dating for andesite coupled with two rhyolitic rocks yield 69.71 Ma, 62.49 Ma, and 66.55 Ma, defining the probable span of their magmatism from Late Cretaceous to Palaeogene. Based on their mineralogical and geochemical compositional diversity, the Khardung volcanic rocks are categorized as intermediate volcanic rocks (basaltic andesite-andesite) and felsic volcanic rocks (dacite-rhyolite). The intermediate volcanic rocks are marked by low SiO<sub>2</sub> (52.80-61.31 wt.%), enriched LREEs, and negative HFSEs (Nb, Ti, Zr) anomalies whereas,  felsic volcanic rocks are characterized by high SiO<sub>2</sub> (64.52-79.19 wt.%), pronounced negative Eu anomalies, enriched LREE and concave-downward HREE’s and negative HFSE’s (Nb, Ti) anomalies. Both the intermediate and felsic volcanic rocks exhibit quartz, sanidine, albite, bytownite, and diopside as their dominant mineral phases. Geochemical signatures indicate that the fractional crystallization and crustal contamination played a significant role in the evolution of the Khardung volcanic rocks and their geochemical diversity probably resulted from the partial melting of the common primary source, which had been metasomatized by variable contributions of fluids released from down going Neo-Tethyan oceanic crust. Thus, the Khardung volcanic rocks could be considered as a product of mature stage of arc magmatism during the subduction of the Neo-Tethyan oceanic crust, which occurred during Early Cretaceous to Palaeogene, prior to the main collision between the Indian and Asian plates.</p>


2010 ◽  
Vol 61 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Boris Vrbanac ◽  
Josipa Velić ◽  
Tomislav Malvić

Sedimentation of deep-water turbidites in the SW part of the Pannonian BasinThe Sava Depression and the Bjelovar Subdepression belong to the SW margin of the Pannonian Basin System, which was part of the Central Paratethys during the Pannonian period. Upper Pannonian deposits of the Ivanic-Grad Formation in the Sava Depression include several lithostratigraphic members such as Iva and Okoli Sandstone Member or their lateral equivalents, the Zagreb Member and Lipovac Marlstone Member. Their total thickness in the deepest part of the Sava Depression reaches up to 800 meters, while it is 100-200 meters in the margins of the depression. Deposits in the depression are composed of 4 facies. In the period of turbiditic activities these facies are primarily sedimented as different sandstone bodies. In the Bjelovar Subdepression, two lithostratigraphic members (lateral equivalent) were analysed, the Zagreb Member and Okoli Sandstone Member. The thickness of the Bjelovar Subdepression ranges from 50 meters along the S and SE margins to more than 350 meters along the E margin. Generally, detritus in the north-west part of the analysed area originated from a single source, the Eastern Alps, as demonstrated by sedimentological and physical properties, the geometry of the sandstone body and the fossil content. This clastic material was found to be dispersed throughout the elongated and relatively narrow Sava Depression and in the smaller Bjelovar Subdepression. Sedimentation primarily occurred in up to 200 meters water depth and was strongly influenced by the sub-aqueous paleorelief, which determined the direction of the flow of turbidity currents and sandstone body geometries. The main stream with medium- and fine-grained material was separated by two independent turbiditic flows from N-NW to the SE-E. Variability in the thickness of sandstone bodies is the result of differences in subsidence and cycles of progradation and retrogradation of turbidite fans.


1987 ◽  
Vol 124 (2) ◽  
pp. 121-133 ◽  
Author(s):  
G. J. Nichols

AbstractThe Aguero fanglomerate body developed in late Oligocene to early Miocene time at the northern margin of the Ebro Basin where the emergent southern Pyrenean thrust front created a topographic high. Tectonic activity in the thrust belt strongly influenced the sequences and structures within the fan deposits. The fan deposits display an initial coarsening-up sequence. Intraformational unconformities subdivide the proximal sediments into a series of wedges. These result from a continued uplift along the thrust front during the initial stages of fan development. A major intraformational unconformity marks the top of this sequence and the start of a fining-up sequence. Further tectonic activity in the thrust front is indicated by a syn-depositional synclinal fold which decreases in amplitude up sequence. Rejuvenation of fan sedimentation to form a second coarsening-up sequence reflects renewed activity in the thrust front. This second sedimentation event resulted in a plus 200 m thickness of massive conglomerates. The geographical limits of fan sedimentation can be determined because the fan deposits are lithologically distinct from the other Ebro Basin molasse in the area. The area of the drainage basin of the fan can also be estimated by consideration of the clast types present in the fan deposits. The fan and drainage basin areas are estimated to be 6 km2 and 10 km2 respectively.


2019 ◽  
Vol 486 (3) ◽  
pp. 371-374
Author(s):  
M. A. Naumenko ◽  
V. V. Guzivaty ◽  
N. A. Nesterov ◽  
D. A. Sybetto

A digital bathymetric model with a spatial resolution of 10 × 10 m have been created based on measurements of bottom depths on the Southwest slope of the Island Valaam (Lake Ladoga) by sidescan sonar combined with geo-referenced system. Bottom inclinations were recognized with magnitudes up to 60° with rock structures with virtually no modern sediments. Scree and large boulders have been found, which can cause underwater noise when sliding down the steep slopes of Island Valaam.


2018 ◽  
Vol 40 (3) ◽  
pp. 1365
Author(s):  
G. D. Bathrellos ◽  
H. D. Skilodimou ◽  
G. Livaditis ◽  
E. Verikiou-Papaspiridakou

The Kleinovitikos stream is a tributary ofPineios River in the Western Thessaly. Its basin drainages parts of mountain range of Southern Pindos as well as the mountain of Koziaka. In this study a quantitative analysis of drainage network was accomplished and the relation of tectonics features with the watershed and the channels of drainage network were investigated. The main channel of the drainage network is of 6th order, while the dominated type of the network is the trellis drainage pattern. The morphological slopes of the basin show various fluctuations. The gentle slopes express erosional landforms while the steep ones represent geological and tectonic structures. It was noted by the quantitative analysis of the drainage network that the geological and tectonic structure of the area affects in its evolution. Moreover, the outcrop of heterogeneous lithological formations in the basin affects the values of drainage density and frequency. The lithology and the secondary cracks involve in the prevailing direction of the watershed. The streams of 1st -3r order are controlled by the younger cracks; the younger cracks as well as the older Alpine cracks have an influence on the streams of 4' and 5' order, and the Alpine tectonic activity affects the stream of 6' order.


Sign in / Sign up

Export Citation Format

Share Document