scholarly journals Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine Bacillus subtilis strain SR60

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1704 ◽  
Author(s):  
Bruno Oliveira de Veras ◽  
Yago Queiroz dos Santos ◽  
Katharina Marquez Diniz ◽  
Gabriela Silva Campos Carelli ◽  
Elizeu Antunes dos Santos

Background:The marine environment harbours different microorganisms that inhabit niches with adverse conditions, such as temperature variation, pressure and salinity. To survive these particular conditions, marine bacteria use unique metabolic and biochemical features, producing enzymes that may have industrial value.Methods:The aim of this study was to observe the production of multiple thermoenzymes and haloenzymes, including protease, cellulase, amylase and xylanase, from bacterial strains isolated from coral reefs Cabo Branco, Paraiba State, Brazil. Strain SR60 was identified by the phylogenetic analysis to beBacillus subtilisthrough a 16S ribosomal RNA assay. To screening of multiples enzymesB. subtilisSR60 was inoculated in differential media to elicit the production of extracellular enzymes with the addition of a range of salt concentrations (0, 0.25, 0.50, 1.0, 1.25 and 1.5 M NaCl).Results:The screening showed a capacity of production of halotolerant protease, cellulase, amylase and xylanase and thermostable by the isolate (identified asB. subtilisSR60). Protease, cellulase, amylase and xylanase production were limited to 1.5, 1.5, 1.0 and 1.25 M NaCl, respectively.Conclusions:Bacillus subtilisSR60 was shown in this study be capable of producing protease, cellulase, amylase and xylanase when submitted to a high salinity environment. These data demonstrate the halophytic nature of SR60 and its ability to produce multiples enzymes.

1979 ◽  
Vol 179 (2) ◽  
pp. 333-339 ◽  
Author(s):  
A Y Strongin ◽  
D I Gorodetsky ◽  
I A Kuznetsova ◽  
V V Yanonis ◽  
Z T Abramov ◽  
...  

Intracellular serine proteinase was isolated from sporulating cells of Bacillus subtilis Marburg 168 by gramicidin S-Sepharose 4B affinity chromatography. The enzymological characteristics, the amino acid composition and the 19 residues of the N-terminal sequence of the enzyme are reported. The isolated proteinase was closely related to, but not completely identical with, the intracellular serine proteinase of B. subtilis A-50. The divergence between these two intracellular enzymes was less than that between the corresponding extracellular serine proteinases (subtilisins) of types Carlsberg and BPN′!, produced by these bacterial strains. This may be connected with the more strict selection constraints imposed in intracellular enzymes during evolution.


2013 ◽  
Vol 79 (18) ◽  
pp. 5527-5532 ◽  
Author(s):  
Yan Hu ◽  
Melanie M. Miller ◽  
Alan I. Derman ◽  
Brian L. Ellis ◽  
Rose Gomes Monnerat ◽  
...  

ABSTRACTSoil-transmitted helminths (hookworms, whipworms, and large roundworms) are agents of intestinal roundworm diseases of poverty that infect upwards of 2 billion people worldwide. A great challenge in treating these diseases is the development of anthelmintic therapeutics that are inexpensive, can be produced in great quantity, and are capable of delivery under varied and adverse environmental conditions. A potential solution to this challenge is the use of live bacteria that are acceptable for human consumption, e.g.,Bacillus subtilis, and that can be engineered with therapeutic properties. In this study, we expressed theBacillus thuringiensisanthelmintic protein Cry5B in a bacterial strain that has been used as a model for live bacterial therapy,Bacillus subtilisPY79. PY79 transformed with a Cry5B expression plasmid (PY79-Cry5B) is able to express Cry5B from the endogenousB. thuringiensis cry5Bpromoter. During sporulation of PY79-Cry5B, Cry5B is packaged as a crystal. Furthermore, Cry5B produced in PY79 is bioactive, with a 50% lethal concentration (LC50) of 4.3 μg/ml against the roundwormCaenorhabditis elegans. PY79-Cry5B was a significantly effective therapeutic in experimentalAncylostoma ceylanicumhookworm infections of hamsters. A single 10-mg/kg (0.071 μmol/kg of body weight) dose of Cry5B administered as a Cry5B-PY79 spore crystal lysate achieved a 93% reduction in hookworm burdens, which is superior on a molar level to reductions seen with clinically used anthelmintics. Given that a bacterial strain such as this one can be produced cheaply in massive quantities, our results demonstrate that the engineering and delivery of live bacterial strains have great potential to treat a significant contributor to poverty worldwide, namely, hookworm disease and other soil-transmitted helminthiasis.


Author(s):  
Naif Abdullah Al-Dhabi ◽  
Galal Ali Esmail ◽  
Mariadhas Valan Arasu

Crude oil and its derivatives are the most important pollutants in natural environments. Bioremediation of crude oil using bacteria has emerged as a green cleanup approach in recent years. In this study, biosurfactant-producing Bacillus subtilis strain Al-Dhabi-130 was isolated from the marine soil sediment. This organism was cultured in solid-state fermentation using agro-residues to produce cost-effective biosurfactants for the bioremediation of crude-oil contaminated environments. Date molasses improved biosurfactant production and were used for further optimization studies. The traditional “one-variable-at-a-time approach”, “two-level full factorial designs”, and a response surface methodology were used to optimize the concentrations of date molasses and nutrient supplements for surfactant production. The optimum bioprocess conditions were 79.3% (v/w) moisture, 34 h incubation period, and 8.3% (v/v) glucose in date molasses. To validate the quadratic model, the production of biosurfactant was performed in triplicate experiments, with yields of 74 mg/g substrate. These findings support the applications of date molasses for the production of biosurfactants by B. subtilis strain Al-Dhabi-130. Analytical experiments revealed that the bacterial strain degraded various aromatic hydrocarbons and n-alkanes within two weeks of culture with 1% crude oil. The crude biosurfactant produced by the B. subtilis strain Al-Dhabi-130 desorbed 89% of applied crude oil from the soil sample. To conclude, biosurfactant-producing bacterial strains can increase emulsification of crude oil and support the degradation of crude oil.


2020 ◽  
Vol 17 ◽  
Author(s):  
Srinu Bhoomandla ◽  
Phani Raja Kanuparthy ◽  
Rambabu Gundla ◽  
Ramana Reddy Bobbala

: A Three component Synthesis of novel 5-phenyl-2-(thiophen-2-yl)-4-(trifluoromethyl)-5H-indeno [1,2-b] [1,8] naphthyridin-6(11H)-one derivatives (4a-n) were prepared using 6-phenyl/(thiophen-2-yl)-4-(trifluoromethyl)pyridin-2-amine, 1H-indene-1,3(2H)-dione and aryl aldehyde using 40% aq. HF with good yield. All the synthesized compounds were screened against Gram-positive and Gram-negative bacterial strains and different Candida strains by well diffusion method. Compounds 4c, 4f and 4g showed promising activity on Bacillus subtilis strain and compounds 4c and 4g showed promising activity towards Candida albicans starains.


2019 ◽  
pp. 93-100
Author(s):  
Bruno Oliveira de Veras ◽  
Yago Queiroz dos Santos ◽  
Anderson Felipe Jácome de França ◽  
Penha Patricia Cabral Ribeiro ◽  
Elaine Costa Almeida Barbosa ◽  
...  

2016 ◽  
Vol 29 (2) ◽  
pp. 56-61
Author(s):  
FZ Tanu ◽  
S Hoque

Present study dealt with identification of some heavy metal tolerant bacteria from contaminated industrial soils of Dhaka Export Processing Zone (DEPZ) at Savar, tannery area at Hazaribagh and uncontaminated agricultural soils of Dhamrai and Kushtia in Bangladesh and determination of their tolerance to chromium (Cr6+) and cadmium (Cd2+). A total of 15 isolates from four soil samples were provisionally identified as different species of Bacillus, Micrococcus and Pseudomonas based on their morphological, physiological, and biochemical characteristics. Among them eight colonies were separated based on high level of heavy metal tolerance and identified at molecular level by PCR technique and 16S rRNA gene sequencing as Micrococcus luteus strain P43 (E4), Bacillus pocheonensis strain TR2-6 (T6), Bacillus megaterium strain H2 (T8), Bacillus amyloliquefaciens strain SCSAAB0007 (D10), Bacillus cereus isolate PGBw4 (D11), Bacillus cereus strain ES-4a1 (K12), Bacillus subtilis strain 1320, (K13), and Bacillus subtilis strain DP14 (K14). The Maximum Tolerable Concentration (MTC) of bacterial strains to Cr6+ and Cd2+ ranged between 250-1250 ?g/ml and 30-150 ?g/ml, respectively in nutrient broth medium. From the metal tolerance investigation Bacillus was found as the most heavy metal tolerant to both Cr6+ and Cd2+ among the three genera. The identified heavy metal tolerant bacteria could be useful for the bioremediation of heavy metal contaminated environment.Bangladesh J Microbiol, Volume 29, Number 2, Dec 2012, pp 56-61


2020 ◽  
Vol 14 (3) ◽  
pp. 2063-2074
Author(s):  
Ramya Chouhan ◽  
Suresh Lapaka ◽  
Nagaraju Alpula ◽  
Srinivas Podeti

Microbial sources are regularly used as reliable biocatalysts sources which are often used in the process and production industry. Demands for such organisms with greater capacity of intended enzyme production are on the rise. Lipase is important enzyme used in the biotechnological process of hydrolysis of fats in almost all the relevant industries We have utilized the local oil-contaminated soil resources to search for efficacious bacterial strains that have excellent lipase activity. We were successful in identifying two such bacterial sources, namely, Bacillus subtilis strain RCPS3 and Bacillus fumarioli strain RCPS4, responsible for lipase production from oil effluent contaminated soil of Telangana. This is the first report of these two strains from this part of India that are involved in lipase production. The strains were isolated, optimized, and purified using standard microbiology protocols and were characterized at the molecular level using the biomarker 16s ribosomal RNA genes of the strains. The identified and isolated bacterial strains were confirmed as Bacillus subtilis strain RCPS3, and Bacillus fumarioli strain RCPS4 through molecular and computational characterization.


2016 ◽  
Vol 5 (12) ◽  
pp. 5179
Author(s):  
Ilahi Shaik* ◽  
P. Janakiram ◽  
Sujatha L. ◽  
Sushma Chandra

Indole acetic acid is a natural phytohormone which influence the root and shoot growth of the plants. Six (GM1-GM6) endosymbiotic bacteria are isolated from Gracilaria corticata and screened for the production of IAA out of six, three bacterial strains GM3, GM5 and GM6 produced significant amount of IAA 102.4 µg/ml 89.40 µg/ml 109.43 µg/ml respectively. Presence of IAA in culture filtrate of the above strains is further analyzed and confirmed by TLC. As these bacterial strains, able to tolerate the high salinity these can be effectively used as PGR to increase the crop yield in saline soils.


Sign in / Sign up

Export Citation Format

Share Document