Gene expression and evidence of coregulation of the production of some metabolites of chilli pepper inoculated with Pectobacterium carotovorum ssp. carotovorum

2019 ◽  
Vol 46 (12) ◽  
pp. 1114
Author(s):  
Arnaud Thierry Djami-Tchatchou ◽  
Lerato Bame Tsalaemang Matsaunyane ◽  
Chimdi Mang Kalu ◽  
Khayalethu Ntushelo

Chilli pepper (Capsicum annuum L.) is susceptible to Pectobacterium carotovorum subsp. carotovorum (Pcc), the causal agent of soft rot disease in crops. Understanding the molecular principles of systemic acquired resistance, which is poorly understood in chilli pepper, represents an important step towards understanding inducible defence responses and can assist in designing appropriate intervention strategies for crop disease management. Accordingly, we investigated (via real-time PCR and metabolomics profiling) the molecular response of chilli pepper to Pcc by characterisation of the crucial metabolic regulators involved in the establishment of defence response. We profiled 13 key inducible defence response genes, which included MYB transcriptor factor, ethylene response element-binding protein, suppressor of the G2 allele of Skp1, cytochrome P450, small Sar1 (GTPase), hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase, pathogenesis-related protein 1a, endo-1,3-β-glucanase, chitinase, proteinase inhibitor, defensin, coiled-coil-nucleotide-binding site-leucine-rich repeat (CC–NBS–LRR) resistance and phenylalanine ammonia lyase. In addition, we determined metabolomic shifts induced by Pcc in pepper. The PCR results revealed a significant induction of the selected plant defence-related genes in response to Pcc inoculation; the metabolomic profiling showed that of 99 primary metabolites profiled the quantities of acetylcarnitine, adenosine, adenosine 3′,5′ cyclic monophosphate, guanosine 3′,5′ cyclic monophosphate and inosine decreased in pepper leaves inoculated with Pcc.

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 52
Author(s):  
Jamsari Jamsari ◽  
Maythesya Oktavioni ◽  
Bastian Nova ◽  
Ifan Aulia Candra ◽  
Alfi Asben ◽  
...  

Background: The non-expressor of pathogenesis related gene 1 (NPR1) protein is one of the key regulators in the systemic acquired resistance plant defence system. The cis-acting elements of its distal promoter gene are characterized by salicylic acid inducing elements such as the W-box, RAV1AAT and ASF1, accompanied with enhancer and silencer elements. This study was aimed to isolate and characterize the distal promoter sequence of the NPR1 gene (PD_CbNPR1) from the chili pepper (Capsicum annuum L.) genotype Berangkai, a local genotype known to produce large yields, but is susceptible to viral infection. Elucidating its sequence structure will open a broad range of possibilities to engineer the NPR1 gene expression which is important to improve chili pepper resistant. Methods: PCR-based cloning combined with a primer walking strategy was applied in this study. The BioEdit tool was used to edit the sequence and verify sequence integrity, while homology analysis was conducted with BLASTn searching. Identification of a cis-acting element was detected by PLACE. Results: Isolation of the complete distal promoter sequence of PD_CbNPR1 produced a fragment 5,950 bp in size. BLASTn search analysis indicated that PD_CbNPR1 sequence is highly conserved (99% homology) showing only a single nucleotide polymorphism (SNP) (base substitution) compared with its reference sequence. Analysis using PLACE tools successfully identified nine cis-acting elements containing a W-box, WLE1, RAV1AAT, TATA-box, CAAT-box, GARE and GT1 with multi repeats and diverse motives, as well as enhancer and silencer elements, which is characterized by a CCAAT-box and GAGAAATT pattern, respectively. Conclusion: The distal promoter of the NPR1 gene is highly conserved, showing only one SNP caused by one base substitution event.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jamshaid Hussain ◽  
Jian Chen ◽  
Vittoria Locato ◽  
Wilma Sabetta ◽  
Smrutisanjita Behera ◽  
...  

Abstract The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.


Genome ◽  
2006 ◽  
Vol 49 (12) ◽  
pp. 1594-1605 ◽  
Author(s):  
Barbara De Nardi ◽  
René Dreos ◽  
Lorenzo Del Terra ◽  
Chiara Martellossi ◽  
Elisa Asquini ◽  
...  

Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-s-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.


1997 ◽  
Vol 322 (3) ◽  
pp. 681-692 ◽  
Author(s):  
Przemysław WOJTASZEK

As plants are confined to the place where they grow, they have to develop a broad range of defence responses to cope with pathogenic infections. The oxidative burst, a rapid, transient, production of huge amounts of reactive oxygen species (ROS), is one of the earliest observable aspects of a plant's defence strategy. First this Review describes the chemistry of ROS (superoxide radical, hydrogen peroxide and hydroxyl radical). Secondly, the role of ROS in defence responses is demonstrated, and some important issues are considered, such as: (1) which of the ROS is a major building element of the oxidative burst; (2) the spatial and temporal regulation of the oxidative burst; and (3) differences in the plant's responses to biotic and abiotic elicitation. Thirdly, the relationships between the oxidative burst and other plant defence responses are indicated. These include: (1) an oxygen consumption, (2) the production of phytoalexins, (3) systemic acquired resistance, (4) immobilization of plant cell wall proteins, (5) changes in membrane permeability and ion fluxes and (6) a putative role in hypersensitive cell death. Wherever possible, the comparisons with models applicable to animal systems are presented. Finally, the question of the origin of ROS in the oxidative burst is considered, and two major hypotheses, (1) the action of NADPH oxidase system analogous to that of animal phagocytes, and (2) the pH-dependent generation of hydrogen peroxide by a cell wall peroxidase, are presented. On the basis of this material, a third ‘unifying’ hypothesis is presented, where transient changes in the pH of the cell wall compartment are indicated as a core phenomenon in evoking ROS production. Additionally, a germin/oxalate oxidase system which generates H2O2 in response to pathogenic infection is also described.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiyuan Lv ◽  
Lijuan Hao ◽  
Bi Ma ◽  
Ziwen He ◽  
Yiwei Luo ◽  
...  

Ciboria carunculoides is the dominant causal agent of mulberry sclerotial disease, and it is a necrotrophic fungal pathogen with a narrow host range that causes devastating diseases in mulberry fruit. However, little is known about the interaction between C. carunculoides and mulberry. Here, our transcriptome sequencing results showed that the transcription of genes in the secondary metabolism and defense-related hormone pathways were significantly altered in infected mulberry fruit. Due to the antimicrobial properties of proanthocyanidins (PAs), the activation of PA biosynthetic pathways contributes to defense against pathogens. Salicylic acid (SA) and jasmonic acid (JA) are major plant defense hormones. However, SA signaling and JA signaling are antagonistic to each other. Our results showed that SA signaling was activated, while JA signaling was inhibited, in mulberry fruit infected with C. carunculoides. Yet SA mediated responses are double-edged sword against necrotrophic pathogens, as SA not only activates systemic acquired resistance (SAR) but also suppresses JA signaling. We also show here that the small secreted protein CcSSP1 of C. carunculoides activates SA signaling by targeting pathogenesis-related protein 1 (PR1). These findings reveal that the infection strategy of C. carunculoides functions by regulating SA signaling to inhibit host defense responses.


2007 ◽  
Vol 97 (4) ◽  
pp. 429-437 ◽  
Author(s):  
G. Alfano ◽  
M. L. Lewis Ivey ◽  
C. Cakir ◽  
J. I. B. Bos ◽  
S. A. Miller ◽  
...  

A light sphagnum peat mix inoculated with Trichoderma hamatum 382 consistently provided a significant (P = 0.05) degree of protection against bacterial spot of tomato and its pathogen Xanthomonas euvesicatoria 110c compared with the control peat mix, even though this biocontrol agent did not colonize aboveground plant parts. To gain insight into the mechanism by which T. hamatum 382 induced resistance in tomato, high-density oligonucleotide microarrays were used to determine its effect on the expression pattern of 15,925 genes in leaves just before they were inoculated with the pathogen. T. hamatum 382 consistently modulated the expression of genes in tomato leaves. We identified 45 genes to be differentially expressed across the replicated treatments, and 41 of these genes could be assigned to at least one of seven functional categories. T. hamatum 382-induced genes have functions associated with biotic or abiotic stress, as well as RNA, DNA, and protein metabolism. Four extensin and extensin-like proteins were induced. However, besides pathogenesis-related protein 5, the main markers of systemic acquired resistance were not significantly induced. This work showed that T. hamatum 382 actively induces systemic changes in plant physiology and disease resistance through systemic modulation of the expression of stress and metabolism genes.


2004 ◽  
Vol 29 (3) ◽  
pp. 263-267 ◽  
Author(s):  
Adilce I. H. Benelli ◽  
Norimar D. Denardin ◽  
Carlos A. Forcelini

A resistência sistêmica adquirida (SAR = systemic acquired resistance) é um importante mecanismo de resistência a doenças em plantas. Neste estudo, a ação do acibenzolar-S-metil (ASM), derivado benzotidiazólico ativador de resistência em plantas foi avaliada sobre a brotação de tubérculos de batata (Solanum tuberosum) e quanto à ação deste na indução de resistência à canela-preta, incitada por Pectobacterium carotovorum subsp. atrosepticum atípica (Pcaa), nas cultivares Asterix, Baronesa e Monalisa. Nas doses, 60, 120, 150, 200 e 250 mg i.a. l -1, o produto não inibiu o número de brotos. Contudo, em concentrações mais elevadas influenciou o comprimento destes. Em casa de vegetação, nas concentrações de 60 e 120 mg i.a. l -1 ASM, tanto no tratamento de tubérculos quanto no de aspersão nas plantas, a cultivar Asterix, respondeu ao tratamento do ASM, conferindo-lhe resistência à canela preta. Na cultivar Baronesa, a resposta ao ASM ocorreu somente no tratamento de tubérculos, e, para a cultivar Monalisa, não houve resposta ao ASM. Verifica-se, neste estudo, que houve ação do ASM sobre a indução de resistência e que este foi específico para determinadas cultivares de batata.


2001 ◽  
Vol 54 ◽  
pp. 209-212 ◽  
Author(s):  
R.F. Van_Toor ◽  
M.V. Jaspers ◽  
A. Stewart

The synthetic plant defence elicitor acibenzolarSmethyl (CGA245704 50WG Syngenta Crop Protection) was applied to Camellia japonica bushes to induce systemic acquired resistance for protection of flowers against ascospore infection by Ciborinia camelliae Bushes were sprayed weekly at 500 mg/litre either before flowering during flowering or both before and during flowering All untreated and treated flowers became infected with camellia blight to the same degree and produced similar numbers of sclerotia averaging 34 sclerotia/flower Thus acibenzolarSmethyl was not effective in reducing the incidence of camellia flower blight


Sign in / Sign up

Export Citation Format

Share Document