scholarly journals A novel variable delay Go/No-Go task to study attention, motivation and working memory in the head-fixed rodent

F1000Research ◽  
2014 ◽  
Vol 2 ◽  
pp. 125 ◽  
Author(s):  
Samuel D Dolzani ◽  
Shinya Nakamura ◽  
Donald C Cooper

In order to parse the causal elements underlying complex behaviors and decision-making processes, appropriate behavioral methods must be developed and used in concurrence with molecular, pharmacological, and electrophysiological approaches. Presented is a protocol for a novel Go/No-Go behavioral paradigm to study the brain attention and motivation/reward circuitry in awake, head-restrained rodents. This experimental setup allows: (1) Pharmacological and viral manipulation of various brain regions via targeted guide cannula; (2) Optogenetic cell-type specific activation and silencing with simultaneous electrophysiological recording and; (3) Repeated electrophysiological single and multiple unit recordings during ongoing behavior. The task consists of three components. The subject first makes an observing response by initiating a trial by lever pressing in response to distinctive Go or No-Go tones.  Then, after a variable delay period, the subject is presented with a challenge period cued by white noise during which they must respond with a lever press for the Go condition or withhold from lever pressing for the duration of the cue in the No-Go condition. After correctly responding during the challenge period (Challenge) and a brief delay, a final reward tone of the same frequency as the initiation tone is presented and sucrose reward delivery is available and contingent upon lever pressing. Here, we provide a novel procedure and validating data set that allows researchers to study and manipulate components of behavior such as attention, motivation, impulsivity, and reward-related working memory during an ongoing operant behavioral task while limiting interference from non task-related behaviors.

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 125 ◽  
Author(s):  
Samuel D Dolzani ◽  
Shinya Nakamura ◽  
Donald C Cooper

In order to parse the causal elements underlying complex behaviors and decision-making processes, appropriate behavioral methods must be developed and used in concurrence with molecular, pharmacological, and electrophysiological approaches. Presented is a protocol for a novel Go/No-Go behavioral paradigm to study the brain attention and motivation/reward circuitry in awake, head-restrained rodents. This experimental setup allows: (1) Pharmacological and viral manipulation of various brain regions via targeted guide cannula; (2) Optogenetic cell-type specific activation and silencing with simultaneous electrophysiological recording and; (3) Repeated electrophysiological single and multiple unit recordings during ongoing behavior. The task consists of three components. The subject first makes an observing response by initiating a trial by lever pressing in response to distinctive Go or No-Go tones.  Then, after a variable delay period, the subject is presented with a challenge period cued by white noise during which they must respond with a lever press for the Go condition or withhold from lever pressing for the duration of the cue in the No-Go condition. After correctly responding during the challenge period (Challenge) and a brief delay, a final reward tone of the same frequency as the initiation tone is presented and sucrose reward delivery is available and contingent upon lever pressing. Here, we provide a novel procedure and validating data set that allows researchers to study and manipulate components of behavior such as attention, motivation, impulsivity, and reward-related working memory during an ongoing operant behavioral task while limiting interference from non task-related behaviors.


Author(s):  
Zakia Z Haque ◽  
Ranshikha Samandra ◽  
Farshad Alizadeh Mansouri

The concept of working memory refers to a collection of cognitive abilities and processes involved in the short-term storage of task-relevant information to guide the ongoing and upcoming behaviour and therefore describes an important aspect of executive control of behaviour for achieving goals. Deficits in working memory and related cognitive abilities have been observed in patients with brain damage or neuropsychological disorders and therefore it is important to better understand neural substrate and underlying mechanisms of working memory. Working memory relies on neural mechanisms that enable encoding, maintenance and manipulation of stored information as well as integrating them with ongoing and future goals. Recently, a surge in brain stimulation studies have led to development of various non-invasive techniques for localized stimulation of prefrontal and other cortical regions in humans. These brain stimulation techniques can potentially be tailored to influence neural activities in particular brain regions and modulate cognitive functions and behaviour. Combined use of brain stimulation with neuroimaging and electrophysiological recording have provided a great opportunity to monitor neural activity in various brain regions and non-invasively intervene and modulate cognitive functions in cognitive tasks. These studies have shed more light on the neural substrate and underlying mechanisms of working memory in humans. Here, we review findings and insight from these brain stimulation studies about the contribution of brain regions, and particularly prefrontal cortex, to working memory.


2019 ◽  
Author(s):  
Sneha Shashidhara ◽  
Floortje S. Spronkers ◽  
Yaara Erez

AbstractThe frontoparietal ‘multiple-demand’ (MD) control network plays a key role in goal-directed behavior. Recent developments of multivoxel pattern analysis (MVPA) for fMRI data allow for more fine-grained investigations into the functionality and properties of brain systems. In particular, MVPA in the MD network was used to gain better understanding of control processes such as attentional effects, adaptive coding, and representation of multiple task-relevant features, but overall low decoding levels have limited its use for this network. A common practice of applying MVPA is by investigating pattern discriminability within a region-of-interest (ROI) using a template mask, thus ensuring that the same brain areas are studied in all participants. This approach offers high sensitivity, but does not take into account differences between individuals in the spatial organization of brain regions. An alternative approach uses independent localizer data for each subject to select the most responsive voxels and define individual ROIs within the boundaries of a group template. Such an approach allows for a refined and targeted localization based on the unique pattern of activity of individual subjects while ensuring that functionally similar brain regions are studied for all subjects. In the current study we tested whether using individual ROIs leads to changes in decodability of task-related neural representations as well as univariate activity across the MD network compared to when using a group template. We used three localizer tasks to separately define subject-specific ROIs: spatial working memory, verbal working memory, and a Stroop task. We then systematically assessed univariate and multivariate results in a separate rule-based criterion task. All the localizer tasks robustly recruited the MD network and evoked highly reliable activity patterns in individual subjects. Consistent with previous studies, we found a clear benefit of the subject-specific ROIs for univariate results from the criterion task, with increased activity in the individual ROIs based on the localizers’ data, compared to the activity observed when using the group template. In contrast, there was no benefit of the subject-specific ROIs for the multivariate results in the form of increased discriminability, as well as no cost of reduced discriminability. Both univariate and multivariate results were similar in the subject-specific ROIs defined by each of the three localizers. Our results provide important empirical evidence for researchers in the field of cognitive control for the use of individual ROIs in the frontoparietal network for both univariate and multivariate analysis of fMRI data, and serve as another step towards standardization and increased comparability across studies.


2020 ◽  
Vol 32 (7) ◽  
pp. 1348-1368 ◽  
Author(s):  
Sneha Shashidhara ◽  
Floortje S. Spronkers ◽  
Yaara Erez

The frontoparietal “multiple-demand” (MD) control network plays a key role in goal-directed behavior. Recent developments of multivoxel pattern analysis (MVPA) for fMRI data allow for more fine-grained investigations into the functionality and properties of brain systems. In particular, MVPA in the MD network was used to gain better understanding of control processes such as attentional effects, adaptive coding, and representation of multiple task-relevant features, but overall low decoding levels have limited its use for this network. A common practice of applying MVPA is by investigating pattern discriminability within a ROI using a template mask, thus ensuring that the same brain areas are studied in all participants. This approach offers high sensitivity but does not take into account differences between individuals in the spatial organization of brain regions. An alternative approach uses independent localizer data for each subject to select the most responsive voxels and define individual ROIs within the boundaries of a group template. Such an approach allows for a refined and targeted localization based on the unique pattern of activity of individual subjects while ensuring that functionally similar brain regions are studied for all subjects. In the current study, we tested whether using individual ROIs leads to changes in decodability of task-related neural representations as well as univariate activity across the MD network compared with when using a group template. We used three localizer tasks to separately define subject-specific ROIs: spatial working memory, verbal working memory, and a Stroop task. We then systematically assessed univariate and multivariate results in a separate rule-based criterion task. All the localizer tasks robustly recruited the MD network and evoked highly reliable activity patterns in individual subjects. Consistent with previous studies, we found a clear benefit of the subject-specific ROIs for univariate results from the criterion task, with increased activity in the individual ROIs based on the localizers' data, compared with the activity observed when using the group template. In contrast, there was no benefit of the subject-specific ROIs for the multivariate results in the form of increased discriminability, as well as no cost of reduced discriminability. Both univariate and multivariate results were similar in the subject-specific ROIs defined by each of the three localizers. Our results provide important empirical evidence for researchers in the field of cognitive control for the use of individual ROIs in the frontoparietal network for both univariate and multivariate analysis of fMRI data and serve as another step toward standardization and increased comparability across studies.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2019 ◽  
Vol 30 (4) ◽  
pp. 2542-2554 ◽  
Author(s):  
Maryam Ghaleh ◽  
Elizabeth H Lacey ◽  
Mackenzie E Fama ◽  
Zainab Anbari ◽  
Andrew T DeMarco ◽  
...  

Abstract Two maintenance mechanisms with separate neural systems have been suggested for verbal working memory: articulatory-rehearsal and non-articulatory maintenance. Although lesion data would be key to understanding the essential neural substrates of these systems, there is little evidence from lesion studies that the two proposed mechanisms crucially rely on different neuroanatomical substrates. We examined 39 healthy adults and 71 individuals with chronic left-hemisphere stroke to determine if verbal working memory tasks with varying demands would rely on dissociable brain structures. Multivariate lesion–symptom mapping was used to identify the brain regions involved in each task, controlling for spatial working memory scores. Maintenance of verbal information relied on distinct brain regions depending on task demands: sensorimotor cortex under higher demands and superior temporal gyrus (STG) under lower demands. Inferior parietal cortex and posterior STG were involved under both low and high demands. These results suggest that maintenance of auditory information preferentially relies on auditory-phonological storage in the STG via a nonarticulatory maintenance when demands are low. Under higher demands, sensorimotor regions are crucial for the articulatory rehearsal process, which reduces the reliance on STG for maintenance. Lesions to either of these regions impair maintenance of verbal information preferentially under the appropriate task conditions.


2021 ◽  
Vol 11 (7) ◽  
pp. 915
Author(s):  
Marianna Stella ◽  
Paul E. Engelhardt

In this study, we examined eye movements and comprehension in sentences containing a relative clause. To date, few studies have focused on syntactic processing in dyslexia and so one goal of the study is to contribute to this gap in the experimental literature. A second goal is to contribute to theoretical psycholinguistic debate concerning the cause and the location of the processing difficulty associated with object-relative clauses. We compared dyslexic readers (n = 50) to a group of non-dyslexic controls (n = 50). We also assessed two key individual differences variables (working memory and verbal intelligence), which have been theorised to impact reading times and comprehension of subject- and object-relative clauses. The results showed that dyslexics and controls had similar comprehension accuracy. However, reading times showed participants with dyslexia spent significantly longer reading the sentences compared to controls (i.e., a main effect of dyslexia). In general, sentence type did not interact with dyslexia status. With respect to individual differences and the theoretical debate, we found that processing difficulty between the subject and object relatives was no longer significant when individual differences in working memory were controlled. Thus, our findings support theories, which assume that working memory demands are responsible for the processing difficulty incurred by (1) individuals with dyslexia and (2) object-relative clauses as compared to subject relative clauses.


2007 ◽  
Vol 362 (1481) ◽  
pp. 761-772 ◽  
Author(s):  
Mark D'Esposito

Working memory refers to the temporary retention of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be stored for longer periods of time through active maintenance or rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behaviour. Empirical studies of working memory using neuroscientific techniques, such as neuronal recordings in monkeys or functional neuroimaging in humans, have advanced our knowledge of the underlying neural mechanisms of working memory. This rich dataset can be reconciled with behavioural findings derived from investigating the cognitive mechanisms underlying working memory. In this paper, I review the progress that has been made towards this effort by illustrating how investigations of the neural mechanisms underlying working memory can be influenced by cognitive models and, in turn, how cognitive models can be shaped and modified by neuroscientific data. One conclusion that arises from this research is that working memory can be viewed as neither a unitary nor a dedicated system. A network of brain regions, including the prefrontal cortex (PFC), is critical for the active maintenance of internal representations that are necessary for goal-directed behaviour. Thus, working memory is not localized to a single brain region but probably is an emergent property of the functional interactions between the PFC and the rest of the brain.


2021 ◽  
pp. 1-29
Author(s):  
Nicole Sanford ◽  
Todd S. Woodward

Abstract Background: Working memory (WM) impairment in schizophrenia substantially impacts functional outcome. Although the dorsolateral pFC has been implicated in such impairment, a more comprehensive examination of brain networks comprising pFC is warranted. The present research used a whole-brain, multi-experiment analysis to delineate task-related networks comprising pFC. Activity was examined in schizophrenia patients across a variety of cognitive demands. Methods: One hundred schizophrenia patients and 102 healthy controls completed one of four fMRI tasks: a Sternberg verbal WM task, a visuospatial WM task, a Stroop set-switching task, and a thought generation task (TGT). Task-related networks were identified using multi-experiment constrained PCA for fMRI. Effects of task conditions and group differences were examined using mixed-model ANOVA on the task-related time series. Correlations between task performance and network engagement were also performed. Results: Four spatially and temporally distinct networks with pFC activation emerged and were postulated to subserve (1) internal attention, (2) auditory–motor attention, (3) motor responses, and (4) task energizing. The “energizing” network—engaged during WM encoding and diminished in patients—exhibited consistent trend relationships with WM capacity across different data sets. The dorsolateral-prefrontal-cortex-dominated “internal attention” network exhibited some evidence of hypoactivity in patients, but was not correlated with WM performance. Conclusions: Multi-experiment analysis allowed delineation of task-related, pFC-anchored networks across different cognitive constructs. Given the results with respect to the early-responding “energizing” network, WM deficits in schizophrenia may arise from disruption in the “energization” process described by Donald Stuss' model of pFC functions.


2018 ◽  
pp. 130-155
Author(s):  
Fozia Munir ◽  
Mirajul Haq ◽  
Syed Nisar Hussain Hamadani

Maximization of wellbeing is the exceedingly targeted objective that conventional economics going forward. Keeping in view its central place, economists developed well-structured models and tools in order to measure and investigate wellbeing. In received literature, on the subject, various factors have been investigated that affecting wellbeing. However, wellbeing which is viewed from different approaches and is of a different form is not shaping equally with different types of factors. In this context, this study is an attempt to investigate how subjective wellbeing is affecting by social capital. The basic hypothesis is that “individual wellbeing moves parallel with its social capital”. The hypothesis is empirically tested using primary data set of 848 individuals collecting form Azad Jammu and Kashmir (Pakistan). The empirical estimates indicate that keeping other factors constant, an individual that embodied more social capital enjoy more wellbeing in their life. JEL Classification: B24, I30, C43


Sign in / Sign up

Export Citation Format

Share Document