scholarly journals First derivative ATR-FTIR spectroscopic method as a green tool for the quantitative determination of diclofenac sodium tablets

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 176
Author(s):  
Khairi M. S. Fahelelbom ◽  
Abdullah Saleh ◽  
Ramez Mansour ◽  
Sadik Sayed

Background: Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is a rapid quantitative method which has been applied for pharmaceutical analysis. This work describes the utility of first derivative ATR-FTIR spectroscopy in the quantitative determination of diclofenac sodium tablets. Methods: This analytical quantitative technique depends on a first derivative measurement of the area of infrared bands corresponding to the CO stretching range of 1550-1605 cm-1. The specificity, linearity, detection limits, precision and accuracy of the calibration curve, the infrared analysis and data manipulation were determined in order to validate the method. The statistical results were compared with other methods for the quantification of diclofenac sodium. Results: The excipients in the commercial tablet preparation did not interfere with the assay. Excellent linearity was found for the drug concentrations in the range 0.2 – 1.5 w/w %.  (r2= 0.9994). Precision of the method was assessed by the repeated analysis of diclofenac sodium tablets; the results obtained showed small standard deviation and relative standard deviation values, which indicates that the method is quite precise. The high percentage of recovery of diclofenac sodium tablets (99.81, 101.54 and 99.41%) demonstrate the compliance of the obtained recoveries with the pharmacopeial percent recovery. The small limit of detection and limit of quantification values (0.0528 and 0.1599 w/w %, respectively) obtained by this method indicate the high sensitivity of the method. Conclusions: First derivative ATR-FTIR spectroscopy showed high accuracy and precision, is considered as nondestructive, green, low cost and rapid, and can be applied easily for the pharmaceutical quantitative determination of diclofenac sodium tablet formulations.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 176
Author(s):  
Khairi M. S. Fahelelbom ◽  
Abdullah Saleh ◽  
Ramez Mansour ◽  
Sadik Sayed

Background: Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is a rapid quantitative method which has been applied for pharmaceutical analysis. This work describes the utility of first derivative ATR-FTIR spectroscopy in the quantitative determination of diclofenac sodium tablets. Methods: This analytical quantitative technique depends on a first derivative measurement of the area of infrared bands corresponding to the CO stretching range of 1550-1605 cm-1. The specificity, linearity, detection limits, precision and accuracy of the calibration curve, the infrared analysis and data manipulation were determined in order to validate the method. The statistical results were compared with other methods for the quantification of diclofenac sodium. Results: The excipients in the commercial tablet preparation did not interfere with the assay. Excellent linearity was found for the drug concentrations in the range 0.2 – 1.5 w/w %.  (r2= 0.9994). Precision of the method was assessed by the repeated analysis of diclofenac sodium tablets; the results obtained showed small standard deviation and relative standard deviation values, which indicates that the method is quite precise. The high percentage of recovery of diclofenac sodium tablets (99.81, 101.54 and 99.41%) demonstrate the compliance of the obtained recoveries with the pharmacopeial percent recovery. The small limit of detection and limit of quantification values (0.0528 and 0.1599 w/w %, respectively) obtained by this method indicate the high sensitivity of the method. Conclusions: First derivative ATR-FTIR spectroscopy showed high accuracy and precision, is considered as nondestructive, green, low cost and rapid, and can be applied easily for the pharmaceutical quantitative determination of diclofenac sodium tablet formulations.


2008 ◽  
Vol 91 (3) ◽  
pp. 530-535 ◽  
Author(s):  
Bashar A AlKhalidi ◽  
Majed Shtaiwi ◽  
Hatim S AlKhatib ◽  
Mohammad Mohammad ◽  
Yasser Bustanji

Abstract A fast and reliable method for the determination of repaglinide is highly desirable to support formulation screening and quality control. A first-derivative UV spectroscopic method was developed for the determination of repaglinide in tablet dosage form and for dissolution testing. First-derivative UV absorbance was measured at 253 nm. The developed method was validated for linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) in comparison to the U.S. Pharmacopeia (USP) column high-performance liquid chromatographic (HPLC) method. The first-derivative UV spectrophotometric method showed excellent linearity [correlation coefficient (r) = 0.9999] in the concentration range of 135 g/mL and precision (relative standard deviation <1.5). The LOD and LOQ were 0.23 and 0.72 g/mL, respectively, and good recoveries were achieved (98101.8). Statistical comparison of results of the first-derivative UV spectrophotometric and the USP HPLC methods using the t-test showed that there was no significant difference between the 2 methods. Additionally, the method was successfully used for the dissolution test of repaglinide and was found to be reliable, simple, fast, and inexpensive.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Mohsen Keyvanfard ◽  
Khadijeh Alizad ◽  
Razieh Shakeri

A new kinetic spectrophotometric method is described for the determination of ultratrace amounts of sodium cromoglycate (SCG). The method based on catalytic action of SCG on the oxidation of amaranth with periodate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the amaranth at 518 nm, for the first 4 min from initiation of the reaction. Calibration curve was linear in the range of 4.0−36.0 ng mL−1SCG. The limit of detection is 2.7 ng mL−1SCG. The relative standard deviation (RSD) for ten replicate analyses of 12, 20, and 28 ng mL−1SCG was 0.40%, 0.32%, and 0.53%, respectively. The proposed method was used for the determination of SCG in biological samples.


1983 ◽  
Vol 66 (6) ◽  
pp. 1450-1454
Author(s):  
David Y Tobias

Abstract A first-derivative spectroscopic method for the simultaneous determination of acetaminophen and sodium salicylate in tablets was developed. Solutions of this drug combination in acidic ethanol were analyzed using their respective spectral responses at 258.5 and 317.0 nm. The method, which can be used for tablet composite assay and content uniformity analysis, is linear for acetaminophen concentrations ranging from 0.0 to 21.6 μ/mL, and for sodium salicylate concentrations ranging from 0.0 to 36.0 μ/mL. Relative standard deviations for the assay of both drugs in commercial tablets were <2%, and recoveries of acetaminophen and sodium salicylate from spiked samples were 99.7 and 100.1%, respectively. The results obtained by first-derivative spectroscopy were in agreement with the results of a liquid chromatographic procedure for acetaminophen and a fluorometric method for sodium salicylate. The technique used for the selection of wavelengths for analysis is also described.


2012 ◽  
Vol 204-208 ◽  
pp. 4067-4070 ◽  
Author(s):  
Zhi Rong Zhou ◽  
Li Zhen Zhang

A simple kinetic spectrophotometric method was developed for the determination of trace amounts of Ru (III). The method is based on the reduction of spadns by sodium hypophosphite (NaH2PO2) in micellar media. The reaction was monitored spectrophotometrically by measuring the decrease in the absorbance of spadns at 515 nm with a fixed-time method. The decrease in the absorbance of spadns is proportional to the concentration of Ru (III) in the range 0.40–10.0 μg/L with a fixed time of 2.5–7.0 min from the initiation of the reaction. The limit of detection is 0.12 μg/L Ru (III). The relative standard deviation for the determination of 0.10 and 0.20 μg/25mL Ru (III) was 2.3 % and 2.0 %, respectively. The method was applied to the determination of Ru (III) in some ores and metallurgy products.


2011 ◽  
Vol 8 (4) ◽  
pp. 1528-1535 ◽  
Author(s):  
F. Nekouei ◽  
Sh. Nekouei

A simple, fast, reproducible and sensitive method for the flotation- spectrophotometric determination of Al3+is reported. The apparent molar absorptivity (ε) of the ion associate was determined to be 8.35×104L mol-1cm-1. The calibration curve was linear in the concentration range of 1.0-50 ng mL-1of Al3+with a correlation coefficient of 0.9997. The limit of detection (LOD) was 0.621 ng mL. The relative standard deviation (RSD) at 10 and 30 ng mL-1of aluminium were 1.580 and 2.410% (n=7) respectively. The method was applied for measuring the amount of aluminium in water samples.


2013 ◽  
Vol 800 ◽  
pp. 166-172
Author(s):  
Xiong Zhi Wu ◽  
Li Li ◽  
Fei Ping Li ◽  
Wen Ying Jin

A new sorbent (PAMAM4.0GASG) with gallic acid as functional group has been prepared based on G4.0 polyamidoamine dendrimer modified silica gel (PAMAM4.0SG) and characterized with FTIR. It was employed for selective separation, preconcentration and determination of lead in different samples by flame atomic absorption spectrometry (FAAS). Experimental conditions for effective separation and preconcentration of lead were optimized. The preconcentration factor reaches 200 for lead. The relative standard deviation (R.S.D.) under optimum conditions was 2.1% for 5.0 μg ml1 of Pb (II).The relative standard deviation (R.S.D.) was 2.1% for 5.0 μg ml1 of Pb (II). The limit of detection (LOD) of 0.081μg ml1 was achieved with a sample loading flow rate of 4.2 ml min1 and a 10 ml sample volume in the proposed method. The proposed column enrichment method was applied for the preconcentration/separation and determination of Pb (II) in tap water and river water samples successfully.


2010 ◽  
Vol 88 (6) ◽  
pp. 533-539 ◽  
Author(s):  
Larissa Zuppardo Lacerda Sabino ◽  
Daniele Cestari Marino ◽  
Horacio Dorigan Moya

A simple method was developed for determining microquantities of diltiazem, based on the reduction of copper(II) in buffered solution (pH 7.0) and the use of a micellar medium containing 4,4′-dicarboxy-2,2′-biquinoline acid. The copper(I) produced reacts with 4,4′-dicarboxy-2,2′-biquinoline acid and the complexes formed are spectrophotometrically measured at 558 nm. A typical calibration graph shows good linearity (r = 0.993) from 20 to 100 μg mL–1 of diltiazem. The limit of detection and relative standard deviation were calculated as 12 μg mL–1 (99% confidence level) and 3.5% (40 μg mL–1; n = 6), respectively, with a mean recovery value of 96.5% found in pharmaceutical dosages. A straightforward and effective way to recycle the reagents is addressed. The hazardous aspects of the Cu(I)–BCA reaction are presented as well.


Author(s):  
DILIP M CHAFLE

Objective: A simple, sensitive and precise visible spectrophotometric method has been proposed for the determination of cefpirome (CFM) in pure and oral injectable dosage form. Methods: A spectrophotometric method is based on the formation of stable red color product by oxidation of drugs by ferric nitrate and subsequent complexation with 1, 10 – phenanthroline with maximum absorption at 515 nm. Result: The red color complex was formed between Fe (II) and 1, 10 – phenanthroline after reduction of Fe (III) to Fe (II) in the presence of CFM drug. The phosphoric acid solution was used only for quenching the complex formation reaction. Several parameters such as the maximum wavelength of absorption, the volume of reagents, sequence of addition and effect of temperature and time of heating were optimized to achieve high sensitivity, stability and reproducible results. Under the optimum conditions, linear relationship with good correlation coefficient (0.994) was found over the concentration range from 0.20 to 6.00 μg/mL with a molar extinction coefficient 7.7813 × 104 L/mol/cm, limit of detection 0.2026 and limit of quantification 0.6141 μg/mL, respectively. Conclusion: The proposed method was evaluated statistically for linearity, accuracy, and precision in terms of standard deviation, percentage recovery, percentage error and relative standard deviation. The proposed method can be applied for the routine estimation of CFM in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document