scholarly journals Effects of paracetamol (acetaminophen) on gene expression and permeability properties of the rat placenta and fetal brain

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 573
Author(s):  
Liam M. Koehn ◽  
Yifan Huang ◽  
Mark D Habgood ◽  
Kai Kysenius ◽  
Peter J. Crouch ◽  
...  

Background: Paracetamol (acetaminophen) is widely used in pregnancy and generally regarded as “safe” by regulatory authorities. Methods: Clinically relevant doses of paracetamol were administered intraperitoneally to pregnant rats twice daily from embryonic day E15 to 19 (chronic) or as a single dose at E19 (acute). Control samples were from un-treated age-matched animals. At E19, rats were anaesthetised, administered a final paracetamol dose, uteruses were opened and fetuses exposed for sample collection. For RNA sequencing, placentas and fetal brains were removed and flash frozen. Fetal and maternal plasma and cerebrospinal fluid were assayed for α-fetoprotein and interleukin 1β (IL1β). Brains were fixed and examined (immunohistochemistry) for plasma protein distribution. Placental permeability to a small molecule (14C-sucrose) was tested by injection into either mother or individual fetuses; fetal and maternal blood was sampled at regular intervals to 90 minutes. Results: RNA sequencing revealed a large number of genes up- or down-regulated in placentas from acutely or chronically treated animals compared to controls. Most notable was down-regulation of three acute phase plasma proteins (α-fetoprotein, transferrin, transthyretin) in acute and especially chronic experiments and marked up-regulation of immune-related genes, particularly cytokines, again especially in chronically treated dams. IL1β increased in plasma of most fetuses from treated dams but to variable levels and no IL1β was detectable in plasma of control fetuses or any of the dams. Increased placental permeability appeared to be only from fetus to mother for both 14C-sucrose and α-fetoprotein, but not in the reverse direction. In the fetal brain, gene regulatory changes were less prominent than in the placenta of treated fetuses and did not involve inflammatory-related genes; there was no evidence of increased blood-brain barrier permeability. Conclusion: Results suggest that paracetamol may induce an immune-inflammatory-like response in placenta and more caution should be exercised in use of paracetamol in pregnancy.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 573
Author(s):  
Liam M. Koehn ◽  
Yifan Huang ◽  
Mark D Habgood ◽  
Kai Kysenius ◽  
Peter J. Crouch ◽  
...  

Background: Paracetamol (acetaminophen) is widely used in pregnancy and generally regarded as “safe” by regulatory authorities. Methods: Clinically relevant doses of paracetamol were administered intraperitoneally to pregnant rats twice daily from embryonic day E15 to 19 (chronic) or as a single dose at E19 (acute). Control samples were from un-treated age-matched animals. At E19, rats were anaesthetised, administered a final paracetamol dose, uteruses were opened and fetuses exposed for sample collection. For RNA sequencing, placentas and fetal brains were removed and flash frozen. Fetal and maternal plasma and cerebrospinal fluid were assayed for ⍺-fetoprotein and interleukin 1β (IL1β). Brains were fixed and examined (immunohistochemistry) for plasma protein distribution. Placental permeability to a small molecule (14C-sucrose) was tested by injection into either mother or individual fetuses; fetal and maternal blood was sampled at regular intervals to 90 minutes. Results: RNA sequencing revealed a large number of genes up- or down-regulated in placentas from acutely or chronically treated animals compared to controls. Most notable was down-regulation of three acute phase plasma proteins (⍺-fetoprotein, transferrin, transthyretin) in acute and especially chronic experiments and marked up-regulation of immune-related genes, particularly cytokines, again especially in chronically treated dams. IL1β increased in plasma of most fetuses from treated dams but to variable levels and no IL1β was detectable in plasma of control fetuses or any of the dams. Increased placental permeability appeared to be only from fetus to mother for both 14C-sucrose and ⍺-fetoprotein, but not in the reverse direction. In the fetal brain, gene regulatory changes were less prominent than in the placenta of treated fetuses and did not involve inflammatory-related genes; there was no evidence of increased blood-brain barrier permeability. Conclusion: Results suggest that paracetamol may induce an immune-inflammatory-like response in placenta and more caution should be exercised in use of paracetamol in pregnancy.


2007 ◽  
Vol 23 (2) ◽  
pp. 65-74 ◽  
Author(s):  
C.S. Kim ◽  
I.A. Ross ◽  
R.L. Sprando ◽  
W.D. Johnson ◽  
S.C. Sahu ◽  
...  

Androstenedione, an anabolic steroid used to enhance athletic performance, was administered in corn oil by gastric intubation once daily in the morning to nonpregnant female rats at a dose of 5 or 60mg/kg/day, beginning two weeks before mating and continuing through gestation day (GD) 19. On GD 20, the distribution of androstenedione and other steroid metabolites was investigated in the maternal plasma and target organs, including brain and liver. The concentration of estradiol in plasma approached a statistically significant increase after treatment as compared with the controls, whereas the levels of androstenedione, testosterone and progesterone were not significantly different from the controls. In the liver, the concentrations of androstenedione and estradiol only were increased in a dose-related manner. None of these steroids was detectable in the brain. Androstenedione treatment also produced changes in the level of selected free fatty acids (FFAs) in the maternal blood, brain, liver and fetal brain. The concentrations of palmitic acid (16:0) and stearic acid (18:0) in the plasma were not significantly different between the controls and treated rats. However, oleic acid (18:1), linoleic acid (18:2) and docosahexaenoic acid (DHA, 22:6) were 17.94 ± 2.06 μg/ml, 24.23 ± 2.42 μg/ml and 4.08 ± 0.53 μg/ml, respectively, in the controls, and none of these fatty acids was detectable in the treated plasma. On the other hand, palmitic, stearic, oleic, linoleic and DHA were present in both control and treated livers. Among the FFAs in liver, linoleic and DHA were increased 87% and 169%, respectively, over controls. Palmitic, stearic and oleic acids were not significantly affected by the 60 mg/kg treatment. These were present in both control maternal and fetal brains, whereas linoleic acid was found only in fetal brain control. DHA was present only in the control maternal brain (0.02 ± 0.02 μg/mg protein) and fetal brain (0.24 ± 0.15 μg/mg protein). The results indicated that androstenedione exhibits significantly different effects on the FFA composition among target organs during pregnancy.


2021 ◽  
Author(s):  
Jaedeok Kwon ◽  
Maria Suessmilch ◽  
Alison McColl ◽  
Jonathan Cavanagh ◽  
Brian J. Morris

AbstractExposure to infection in utero predisposes towards psychiatric diseases such as autism, depression and schizophrenia in later life. The mechanisms involved are typically studied by administering mimetics of double-stranded (ds) RNA viral or bacterial infection to pregnant rats or mice. The effect of single-stranded (ss) virus mimetics has been largely ignored, despite evidence linking prenatal ss virus exposure specifically with psychiatric disease. Understanding the effects of gestational ss virus exposure has become even more important with the current SARS-CoV-2 pandemic. In this study, in pregnant mice, we compare directly the effects, on the maternal blood, placenta and the embryonic brain, of maternal administration of ds-virus mimetic poly I:C (to activate toll-like receptor 3, TLR3) and ss-virus mimetic resiquimod (to activate TLR7/8). We find that, 4h after the administration, both poly I:C and resiquimod elevated the levels of IL-6, TNFα, and chemokines including CCL2 and CCL5, in maternal plasma. Both agents also increased placental mRNA levels of IL-6 and IL-10, but only resiquimod increased placental TNFα mRNA. In foetal brain, poly I:C produced no detectable immune-response-related increases, whereas pronounced increases in cytokine (e.g. Il-6, Tnfα) and chemokine (e.g. Ccl2, Ccl5) expression were observed with maternal resiquimod administration. The data show substantial differences between the effect of maternal exposure to a TLR7/8 activator as compared to a TLR3 activator. There are significant implications for future modelling of diseases where maternal ss virus exposure contributes to environmental disease risk in offspring.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaedeok Kwon ◽  
Maria Suessmilch ◽  
Alison McColl ◽  
Jonathan Cavanagh ◽  
Brian J. Morris

AbstractExposure to infection in utero predisposes towards psychiatric diseases such as autism, depression and schizophrenia in later life. The mechanisms involved are typically studied by administering mimetics of double-stranded (ds) virus or bacterial infection to pregnant rats or mice. The effect of single-stranded (ss) virus mimetics has been largely ignored, despite evidence linking prenatal ss virus exposure with psychiatric disease. Understanding the effects of gestational ss virus exposure has become even more important with recent events. In this study, in pregnant mice, we compare directly the effects, on the maternal blood, placenta and the embryonic brain, of maternal administration of ds-virus mimetic poly I:C (to activate Toll-like receptor 3, TLR3) and ss-virus mimetic resiquimod (to activate TLR7/8). We find that, 4 h after the administration, both poly I:C and resiquimod elevated the levels of IL-6, TNFα, and chemokines including CCL2 and CCL5, in maternal plasma. Both agents also increased placental mRNA levels of IL-6 and IL-10, but only resiquimod increased placental TNFα mRNA. In foetal brain, poly I:C produced no detectable immune-response-related increases, whereas pronounced increases in cytokine (e.g. Il-6, Tnfα) and chemokine (e.g. Ccl2, Ccl5) expression were observed with maternal resiquimod administration. The data show substantial differences between the effect of maternal exposure to a TLR7/8 activator as compared to a TLR3 activator. There are significant implications for future modelling of diseases where maternal ss virus exposure contributes to environmental disease risk in offspring.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1402-P
Author(s):  
ELLEN FEHLERT ◽  
FRANZISKA SCHLEGER ◽  
KATARZYNA LINDER ◽  
MARTIN HENI ◽  
HANS-ULRICH HAERING ◽  
...  

2019 ◽  
Vol 25 (5) ◽  
pp. 556-576 ◽  
Author(s):  
E.M. Hodel ◽  
C. Marzolini ◽  
C. Waitt ◽  
N. Rakhmanina

Background:Remarkable progress has been achieved in the identification of HIV infection in pregnant women and in the prevention of vertical HIV transmission through maternal antiretroviral treatment (ART) and neonatal antiretroviral drug (ARV) prophylaxis in the last two decades. Millions of women globally are receiving combination ART throughout pregnancy and breastfeeding, periods associated with significant biological and physiological changes affecting the pharmacokinetics (PK) and pharmacodynamics (PD) of ARVs. The objective of this review was to summarize currently available knowledge on the PK of ARVs during pregnancy and transport of maternal ARVs through the placenta and into the breast milk. We also summarized main safety considerations for in utero and breast milk ARVs exposures in infants.Methods:We conducted a review of the pharmacological profiles of ARVs in pregnancy and during breastfeeding obtained from published clinical studies. Selected maternal PK studies used a relatively rich sampling approach at each ante- and postnatal sampling time point. For placental and breast milk transport of ARVs, we selected the studies that provided ratios of maternal to the cord (M:C) plasma and breast milk to maternal plasma (M:P) concentrations, respectively.Results:We provide an overview of the physiological changes during pregnancy and their effect on the PK parameters of ARVs by drug class in pregnancy, which were gathered from 45 published studies. The PK changes during pregnancy affect the dosing of several protease inhibitors during pregnancy and limit the use of several ARVs, including three single tablet regimens with integrase inhibitors or protease inhibitors co-formulated with cobicistat due to suboptimal exposures. We further analysed the currently available data on the mechanism of the transport of ARVs from maternal plasma across the placenta and into the breast milk and summarized the effect of pregnancy on placental and of breastfeeding on mammal gland drug transporters, as well as physicochemical properties, C:M and M:P ratios of individual ARVs by drug class. Finally, we discussed the major safety issues of fetal and infant exposure to maternal ARVs.Conclusions:Available pharmacological data provide evidence that physiological changes during pregnancy affect maternal, and consequently, fetal ARV exposure. Limited available data suggest that the expression of drug transporters may vary throughout pregnancy and breastfeeding thereby possibly impacting the amount of ARV crossing the placenta and secreted into the breast milk. The drug transporter’s role in the fetal/child exposure to maternal ARVs needs to be better understood. Our analysis underscores the need for more pharmacological studies with innovative study design, sparse PK sampling, improved study data reporting and PK modelling in pregnant and breastfeeding women living with HIV to optimize their treatment choices and maternal and child health outcomes.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Liam M. Koehn ◽  
Katarzyna M. Dziegielewska ◽  
Mark D. Habgood ◽  
Yifan Huang ◽  
Norman R. Saunders

Abstract Background Adenosine triphosphate binding cassette transporters such as P-glycoprotein (PGP) play an important role in drug pharmacokinetics by actively effluxing their substrates at barrier interfaces, including the blood-brain, blood-cerebrospinal fluid (CSF) and placental barriers. For a molecule to access the brain during fetal stages it must bypass efflux transporters at both the placental barrier and brain barriers themselves. Following birth, placental protection is no longer present and brain barriers remain the major line of defense. Understanding developmental differences that exist in the transfer of PGP substrates into the brain is important for ensuring that medication regimes are safe and appropriate for all patients. Methods In the present study PGP substrate rhodamine-123 (R123) was injected intraperitoneally into E19 dams, postnatal (P4, P14) and adult rats. Naturally fluorescent properties of R123 were utilized to measure its concentration in blood-plasma, CSF and brain by spectrofluorimetry (Clariostar). Statistical differences in R123 transfer (concentration ratios between tissue and plasma ratios) were determined using Kruskal-Wallis tests with Dunn’s corrections. Results Following maternal injection the transfer of R123 across the E19 placenta from maternal blood to fetal blood was around 20 %. Of the R123 that reached fetal circulation 43 % transferred into brain and 38 % into CSF. The transfer of R123 from blood to brain and CSF was lower in postnatal pups and decreased with age (brain: 43 % at P4, 22 % at P14 and 9 % in adults; CSF: 8 % at P4, 8 % at P14 and 1 % in adults). Transfer from maternal blood across placental and brain barriers into fetal brain was approximately 9 %, similar to the transfer across adult blood-brain barriers (also 9 %). Following birth when placental protection was no longer present, transfer of R123 from blood into the newborn brain was significantly higher than into adult brain (3 fold, p < 0.05). Conclusions Administration of a PGP substrate to infant rats resulted in a higher transfer into the brain than equivalent doses at later stages of life or equivalent maternal doses during gestation. Toxicological testing of PGP substrate drugs should consider the possibility of these patient specific differences in safety analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boris Guennewig ◽  
Julia Lim ◽  
Lee Marshall ◽  
Andrew N. McCorkindale ◽  
Patrick J. Paasila ◽  
...  

AbstractTau pathology in Alzheimer’s disease (AD) spreads in a predictable pattern that corresponds with disease symptoms and severity. At post-mortem there are cortical regions that range from mildly to severely affected by tau pathology and neuronal loss. A comparison of the molecular signatures of these differentially affected areas within cases and between cases and controls may allow the temporal modelling of disease progression. Here we used RNA sequencing to explore differential gene expression in the mildly affected primary visual cortex and moderately affected precuneus of ten age-, gender- and RNA quality-matched post-mortem brains from AD patients and healthy controls. The two regions in AD cases had similar transcriptomic signatures but there were broader abnormalities in the precuneus consistent with the greater tau load. Both regions were characterised by upregulation of immune-related genes such as those encoding triggering receptor expressed on myeloid cells 2 and membrane spanning 4-domains A6A and milder changes in insulin/IGF1 signalling. The precuneus in AD was also characterised by changes in vesicle secretion and downregulation of the interneuronal subtype marker, somatostatin. The ‘early’ AD transcriptome is characterised by perturbations in synaptic vesicle secretion on a background of neuroimmune dysfunction. In particular, the synaptic deficits that characterise AD may begin with the somatostatin division of inhibitory neurotransmission.


Sign in / Sign up

Export Citation Format

Share Document