scholarly journals Distinct trans-placental effects of maternal immune activation by TLR3 and TLR7 agonists: implications for schizophrenia risk

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaedeok Kwon ◽  
Maria Suessmilch ◽  
Alison McColl ◽  
Jonathan Cavanagh ◽  
Brian J. Morris

AbstractExposure to infection in utero predisposes towards psychiatric diseases such as autism, depression and schizophrenia in later life. The mechanisms involved are typically studied by administering mimetics of double-stranded (ds) virus or bacterial infection to pregnant rats or mice. The effect of single-stranded (ss) virus mimetics has been largely ignored, despite evidence linking prenatal ss virus exposure with psychiatric disease. Understanding the effects of gestational ss virus exposure has become even more important with recent events. In this study, in pregnant mice, we compare directly the effects, on the maternal blood, placenta and the embryonic brain, of maternal administration of ds-virus mimetic poly I:C (to activate Toll-like receptor 3, TLR3) and ss-virus mimetic resiquimod (to activate TLR7/8). We find that, 4 h after the administration, both poly I:C and resiquimod elevated the levels of IL-6, TNFα, and chemokines including CCL2 and CCL5, in maternal plasma. Both agents also increased placental mRNA levels of IL-6 and IL-10, but only resiquimod increased placental TNFα mRNA. In foetal brain, poly I:C produced no detectable immune-response-related increases, whereas pronounced increases in cytokine (e.g. Il-6, Tnfα) and chemokine (e.g. Ccl2, Ccl5) expression were observed with maternal resiquimod administration. The data show substantial differences between the effect of maternal exposure to a TLR7/8 activator as compared to a TLR3 activator. There are significant implications for future modelling of diseases where maternal ss virus exposure contributes to environmental disease risk in offspring.

2021 ◽  
Author(s):  
Jaedeok Kwon ◽  
Maria Suessmilch ◽  
Alison McColl ◽  
Jonathan Cavanagh ◽  
Brian J. Morris

AbstractExposure to infection in utero predisposes towards psychiatric diseases such as autism, depression and schizophrenia in later life. The mechanisms involved are typically studied by administering mimetics of double-stranded (ds) RNA viral or bacterial infection to pregnant rats or mice. The effect of single-stranded (ss) virus mimetics has been largely ignored, despite evidence linking prenatal ss virus exposure specifically with psychiatric disease. Understanding the effects of gestational ss virus exposure has become even more important with the current SARS-CoV-2 pandemic. In this study, in pregnant mice, we compare directly the effects, on the maternal blood, placenta and the embryonic brain, of maternal administration of ds-virus mimetic poly I:C (to activate toll-like receptor 3, TLR3) and ss-virus mimetic resiquimod (to activate TLR7/8). We find that, 4h after the administration, both poly I:C and resiquimod elevated the levels of IL-6, TNFα, and chemokines including CCL2 and CCL5, in maternal plasma. Both agents also increased placental mRNA levels of IL-6 and IL-10, but only resiquimod increased placental TNFα mRNA. In foetal brain, poly I:C produced no detectable immune-response-related increases, whereas pronounced increases in cytokine (e.g. Il-6, Tnfα) and chemokine (e.g. Ccl2, Ccl5) expression were observed with maternal resiquimod administration. The data show substantial differences between the effect of maternal exposure to a TLR7/8 activator as compared to a TLR3 activator. There are significant implications for future modelling of diseases where maternal ss virus exposure contributes to environmental disease risk in offspring.


2007 ◽  
Vol 23 (2) ◽  
pp. 65-74 ◽  
Author(s):  
C.S. Kim ◽  
I.A. Ross ◽  
R.L. Sprando ◽  
W.D. Johnson ◽  
S.C. Sahu ◽  
...  

Androstenedione, an anabolic steroid used to enhance athletic performance, was administered in corn oil by gastric intubation once daily in the morning to nonpregnant female rats at a dose of 5 or 60mg/kg/day, beginning two weeks before mating and continuing through gestation day (GD) 19. On GD 20, the distribution of androstenedione and other steroid metabolites was investigated in the maternal plasma and target organs, including brain and liver. The concentration of estradiol in plasma approached a statistically significant increase after treatment as compared with the controls, whereas the levels of androstenedione, testosterone and progesterone were not significantly different from the controls. In the liver, the concentrations of androstenedione and estradiol only were increased in a dose-related manner. None of these steroids was detectable in the brain. Androstenedione treatment also produced changes in the level of selected free fatty acids (FFAs) in the maternal blood, brain, liver and fetal brain. The concentrations of palmitic acid (16:0) and stearic acid (18:0) in the plasma were not significantly different between the controls and treated rats. However, oleic acid (18:1), linoleic acid (18:2) and docosahexaenoic acid (DHA, 22:6) were 17.94 ± 2.06 μg/ml, 24.23 ± 2.42 μg/ml and 4.08 ± 0.53 μg/ml, respectively, in the controls, and none of these fatty acids was detectable in the treated plasma. On the other hand, palmitic, stearic, oleic, linoleic and DHA were present in both control and treated livers. Among the FFAs in liver, linoleic and DHA were increased 87% and 169%, respectively, over controls. Palmitic, stearic and oleic acids were not significantly affected by the 60 mg/kg treatment. These were present in both control maternal and fetal brains, whereas linoleic acid was found only in fetal brain control. DHA was present only in the control maternal brain (0.02 ± 0.02 μg/mg protein) and fetal brain (0.24 ± 0.15 μg/mg protein). The results indicated that androstenedione exhibits significantly different effects on the FFA composition among target organs during pregnancy.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 573
Author(s):  
Liam M. Koehn ◽  
Yifan Huang ◽  
Mark D Habgood ◽  
Kai Kysenius ◽  
Peter J. Crouch ◽  
...  

Background: Paracetamol (acetaminophen) is widely used in pregnancy and generally regarded as “safe” by regulatory authorities. Methods: Clinically relevant doses of paracetamol were administered intraperitoneally to pregnant rats twice daily from embryonic day E15 to 19 (chronic) or as a single dose at E19 (acute). Control samples were from un-treated age-matched animals. At E19, rats were anaesthetised, administered a final paracetamol dose, uteruses were opened and fetuses exposed for sample collection. For RNA sequencing, placentas and fetal brains were removed and flash frozen. Fetal and maternal plasma and cerebrospinal fluid were assayed for α-fetoprotein and interleukin 1β (IL1β). Brains were fixed and examined (immunohistochemistry) for plasma protein distribution. Placental permeability to a small molecule (14C-sucrose) was tested by injection into either mother or individual fetuses; fetal and maternal blood was sampled at regular intervals to 90 minutes. Results: RNA sequencing revealed a large number of genes up- or down-regulated in placentas from acutely or chronically treated animals compared to controls. Most notable was down-regulation of three acute phase plasma proteins (α-fetoprotein, transferrin, transthyretin) in acute and especially chronic experiments and marked up-regulation of immune-related genes, particularly cytokines, again especially in chronically treated dams. IL1β increased in plasma of most fetuses from treated dams but to variable levels and no IL1β was detectable in plasma of control fetuses or any of the dams. Increased placental permeability appeared to be only from fetus to mother for both 14C-sucrose and α-fetoprotein, but not in the reverse direction. In the fetal brain, gene regulatory changes were less prominent than in the placenta of treated fetuses and did not involve inflammatory-related genes; there was no evidence of increased blood-brain barrier permeability. Conclusion: Results suggest that paracetamol may induce an immune-inflammatory-like response in placenta and more caution should be exercised in use of paracetamol in pregnancy.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 573
Author(s):  
Liam M. Koehn ◽  
Yifan Huang ◽  
Mark D Habgood ◽  
Kai Kysenius ◽  
Peter J. Crouch ◽  
...  

Background: Paracetamol (acetaminophen) is widely used in pregnancy and generally regarded as “safe” by regulatory authorities. Methods: Clinically relevant doses of paracetamol were administered intraperitoneally to pregnant rats twice daily from embryonic day E15 to 19 (chronic) or as a single dose at E19 (acute). Control samples were from un-treated age-matched animals. At E19, rats were anaesthetised, administered a final paracetamol dose, uteruses were opened and fetuses exposed for sample collection. For RNA sequencing, placentas and fetal brains were removed and flash frozen. Fetal and maternal plasma and cerebrospinal fluid were assayed for ⍺-fetoprotein and interleukin 1β (IL1β). Brains were fixed and examined (immunohistochemistry) for plasma protein distribution. Placental permeability to a small molecule (14C-sucrose) was tested by injection into either mother or individual fetuses; fetal and maternal blood was sampled at regular intervals to 90 minutes. Results: RNA sequencing revealed a large number of genes up- or down-regulated in placentas from acutely or chronically treated animals compared to controls. Most notable was down-regulation of three acute phase plasma proteins (⍺-fetoprotein, transferrin, transthyretin) in acute and especially chronic experiments and marked up-regulation of immune-related genes, particularly cytokines, again especially in chronically treated dams. IL1β increased in plasma of most fetuses from treated dams but to variable levels and no IL1β was detectable in plasma of control fetuses or any of the dams. Increased placental permeability appeared to be only from fetus to mother for both 14C-sucrose and ⍺-fetoprotein, but not in the reverse direction. In the fetal brain, gene regulatory changes were less prominent than in the placenta of treated fetuses and did not involve inflammatory-related genes; there was no evidence of increased blood-brain barrier permeability. Conclusion: Results suggest that paracetamol may induce an immune-inflammatory-like response in placenta and more caution should be exercised in use of paracetamol in pregnancy.


Endocrinology ◽  
2016 ◽  
Vol 157 (5) ◽  
pp. 1813-1825 ◽  
Author(s):  
Eva Nüsken ◽  
Maria Wohlfarth ◽  
Gregor Lippach ◽  
Manfred Rauh ◽  
Holm Schneider ◽  
...  

Abstract Leptin availability in perinatal life critically affects metabolic programming. We tested the hypothesis that uteroplacental insufficiency and intrauterine stress affect perinatal leptin availability in rat offspring. Pregnant rats underwent bilateral uterine vessel ligation (LIG; n = 14), sham operation (SOP; n = 12), or no operation (controls, n = 14). Fetal livers (n = 180), placentas (n = 180), and maternal blood were obtained 4 hours (gestational day [E] 19), 24 hours (E20), and 72 hours (E22) after surgery. In the offspring, we took blood samples on E22 (n = 44), postnatal day (P) 1 (n = 29), P2 (n = 16), P7 (n = 30), and P12 (n = 30). Circulating leptin (ELISA) was significantly reduced in LIG (E22, P1, P2) and SOP offspring (E22). Postnatal leptin surge was delayed in LIG but was accelerated in SOP offspring. Placental leptin gene expression (quantitative RT-PCR) was reduced in LIG (E19, E20, E22) and SOP (E20, E22). Hepatic leptin receptor (Lepr-a, mediating leptin degradation) gene expression was increased in LIG fetuses (E20, E22) only. Surprisingly, hypoxia-inducible factors (Hif; Western blot) were unaltered in placentas and were reduced in the livers of LIG (Hif1a, E20; Hif2a, E19, E22) and SOP (Hif2a, E19) fetuses. Gene expression of prolyl hydroxylase 3, a factor expressed under hypoxic conditions contributing to Hif degradation, was increased in livers of LIG (E19, E20, E22) and SOP (E19) fetuses and in placentas of LIG and SOP (E19). In summary, reduced placental leptin production, increased fetal leptin degradation, and persistent perinatal hypoleptinemia are present in intrauterine growth restriction offspring, especially after uteroplacental insufficiency, and may contribute to perinatal programming of leptin resistance and adiposity in later life.


1990 ◽  
Vol 4 (3) ◽  
pp. 247-255 ◽  
Author(s):  
J. D. Penschow ◽  
G. P. Aldred ◽  
P. A. Darling ◽  
J. Haralambidis ◽  
V. E. Hammond ◽  
...  

ABSTRACT Relative levels of rat ovarian α inhibin (αI) and βA inhibin (βAI) mRNAs were measured during pregnancy by dot-blot hybridization of ovarian poly(A+) RNA. Follicular patterns of αI and βAI expression in contralateral ovaries from the same rats were also studied by hybridization histochemistry. Oligodeoxynucleotide probes specific for porcine αI and βAI were synthesized, 32P end-labelled and used as hybridization probes on dot-blots of ovarian RNA and frozen sections of ovarian tissue from pregnant rats. During pregnancy, levels of αI and βAI mRNAs remained fairly constant from day 7 after mating until parturition and then fell within 16 h post partum. In all ovaries observed, expression of inhibin genes was located in granulosa cells of healthy antral follicles. In general, the strongest signals for αI and βAI mRNAs were obtained in large follicles, with weaker signals in smaller follicles. Follicular patterns of αI and βAI expression during pregnancy were often dissimilar when βI and βAI were compared over a range of follicles. Considerable βI mRNA was detectable in some follicles in which βAI was reduced or undetectable, despite strong signals for both αI and βAI in an adjacent follicle. Essentially, αI mRNA levels were relatively consistent between groups of follicles, whereas βAI levels varied considerably. βAI mRNA was never observed in a follicle in the absence of αI mRNA, indicating that activin production in any follicle occurs in the presence of αI mRNA. Similar patterns of expression were observed in ovaries from pregnant mice. We have shown that expression of αI and βAI inhibin genes is not regulated uniformly within follicles of pregnant rat and mouse ovaries.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 624 ◽  
Author(s):  
Navaz Karimian Pour ◽  
Eliza R. McColl ◽  
Micheline Piquette-Miller

Inflammation impacts the expression and function of drug transporters at term-gestation; however, the impact of inflammation on the expression of drug transporters at mid-gestation is largely unknown. Since renal drug transporters play a key role in the clearance of many drugs prescribed during pregnancy, our objective was to study the impact of the viral mimetic poly I:C on the expression of renal transporters in pregnant rats at mid-gestation. Poly I:C (10 mg/kg) or saline was administered intraperitoneally to pregnant Sprague–Dawley rats on gestational day 14. Expression of renal transporters was measured at 6, 24, and 48 h by qRT-PCR and Western blot. The mRNA levels of Mdr1a, Mrp4, Oct2, Octn1, Octn2, Mate1, Oat1-3, Urat1, Oatp4c1, Ent1, and Pept2 were significantly lower in the poly I:C group at 6 h. At 24 h, only the mRNA levels of Oct2, Oatp4c1, and Ent1 were decreased compared to saline. Poly I:C significantly decreased protein expression of Urat1 at 24 h, and P-gp, Oct2, Mate1, Oat1, Oat3 at 48 h,. Poly I:C imposed significant reductions in the expression of several key renal transporters at mid-gestation in pregnant rats. Thus, viral infection may impact renal excretion of drug transporter substrates, potentially leading to drug–disease interactions.


2003 ◽  
Vol 88 (11) ◽  
pp. 5555-5563 ◽  
Author(s):  
Vassilis Tsatsaris ◽  
Frederic Goffin ◽  
Carine Munaut ◽  
Jean-François Brichant ◽  
Marie-Rose Pignon ◽  
...  

Abstract Several growth factors such as vascular endothelial growth factor (VEGF)-A and placental growth factor (PlGF) are involved in the placental vascular development. We investigated whether dysregulation in the VEGF family may explain the defective uteroplacental vascularization characterizing preeclampsia. We compared pregnancies complicated by early onset severe preeclampsia or intrauterine growth retardation to normal pregnancies. Maternal plasma, placentas, and placental bed biopsies were collected. The mRNA levels of VEGF-A, PlGF, and their receptors were quantified in placentas and placental beds. Levels of VEGF-A, PlGF, and soluble VEGF receptor (VEGFR) were assessed in maternal plasma. In compromised pregnancies, elevated levels of VEGF-A and VEGFR-1 mRNAs may reflect the hypoxic status of the placenta. On contrast, the membrane-bound VEGFR-1 was decreased in the placental bed of preeclamptic patients. Preeclampsia was associated with low levels of circulating PlGF and increased levels of total VEGF-A and soluble VEGFR-1. Free VEGF-A was undetectable in maternal blood. Immunohistochemical studies revealed that VEGF-A and PlGF were localized in trophoblastic cells. Altogether, our results suggest two different pathophysiological mechanisms associated with preeclampsia. The first one is related to an overproduction of competitive soluble VEGFR-1 that may lead to suppression of VEGF-A and PlGF effects. The second one is the down-regulation of its membrane bound form (VEGFR-1) in the placental bed, which may result in the defective uteroplacental development.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thorsten Braun ◽  
Vivien Filleböck ◽  
Boris Metze ◽  
Christoph Bührer ◽  
Andreas Plagemann ◽  
...  

AbstractObjectivesTo compare the long-term effects of antenatal betamethasone (ANS, ≤16 mg, =24 mg and >24 mg) in twins on infant and childhood growth.MethodsA retrospective cohort follow up study among 198 twins after ANS including three time points: U1 first neonatal examination after birth and in the neonatal period; U7 examination from the 21st to the 24th month of life and U9 examination from the 60th to the 64th month of life using data from copies of the children’s examination booklets. Inclusion criteria are twin pregnancies with preterm labor, cervical shortening, preterm premature rupture of membranes, or vaginal bleeding, and exposure to ANS between 23+5 and 33+6 weeks. Outcome measures are dosage-dependent and sex-specific effects of ANS on growth (body weight, body length, head circumference, body mass index and ponderal index) up to 5.3 years.ResultsOverall, 99 live-born twin pairs were included. Negative effects of ANS on fetal growth persisted beyond birth, altered infant and childhood growth, independent of possible confounding factors. Overall weight percentile significantly decreased between infancy and early childhood by 18.8%. Birth weight percentiles significantly changed in a dose dependent and sex specific manner, most obviously in female-female and mixed pairs. The ponderal index significantly decreased up to 42.9%, BMI index increased by up to 33.8%.ConclusionsANS results in long-term alterations in infant and childhood growth. Changes between infancy and early childhood in ponderal mass index and BMI, independent of dose or twin pair structure, might indicate an ANS associated increased risk for later life disease.SynopsisFirst-time report on long-term ANS administration growth effects in twin pregnancies, showing persisting alterations beyond birth in infant and childhood growth up to 5.3 years as potential indicator of later life disease risk.


2016 ◽  
Vol 33 (S1) ◽  
pp. s220-s221
Author(s):  
K. MacDowell ◽  
E. Munarriz-Cuezva ◽  
D. Martín-Hernández ◽  
A. Sayd ◽  
B. García-Bueno ◽  
...  

IntroductionAlterations on the innate inflammatory response may underlie the pathophysiology of psychiatric diseases, but the mechanisms implicated remain elusive. Current antipsychotics modulate pro/anti-inflammatory pathways, but the specific mechanisms involved remain elusive. One attractive possibility is the regulation of the intracellular signalling pathways of the innate immune receptors Toll-like 3 (TLR3), which triggers antiviral and inflammatory responses.AimsTo elucidate the regulatory role of paliperidone on maternal immune activation (MIA) induced alterations on TLR3 pathway and on the two emerging endogenous antiinflammatory/antioxidant mechanisms NRF2/antioxidant enzymes pathway and the cytokine milieu regulating M1/M2 polarization in microglia.MethodsPregnant mice were treated with the synthetic Toll-like Receptor 3 (TLR3) agonist Poly(I:C) in gestational day 9 and chronically treated with paliperidone (0,05 mg/kg i.p.) in adult offspring. Animals were sacrificed one day after treatment and behavioral test. Inflammation oxidative stress-related mediators were analysed at mRNA and protein level in prefrontal cortex samples. In addition, behavioral test t-maze was conducted.ResultsPaliperidone prevented TLR3 pathway activation and the subsequent MIA-induced neuroinflammatory response. Also, paliperidone induced an increment in the activity and protein expression of nuclear NRF2, as well as increased mRNA levels of the antioxidant enzymes HO1, SOD and catalase in the MIA model. Otherwise, paliperidone increases the antiinflammatory cytokines levels TGFβ and IL-10 in favour of a M2 microglia profile and increased the levels of the M2 cellular markers ArgI and FOLR2.ConclusionsThe modulation of neuroinflammation and enhancement of endogenous antioxidant/anti-inflammatory pathways by current and new antipsychotics could represent an interesting therapeutic strategy for the future.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Sign in / Sign up

Export Citation Format

Share Document