scholarly journals A proposed molecular mechanism for pathogenesis of severe RNA-viral pulmonary infections

F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 943
Author(s):  
Peter K. Rogan ◽  
Eliseos J. Mucaki ◽  
Ben C. Shirley

Background: Certain riboviruses can cause severe pulmonary complications leading to death in some infected patients. We propose that DNA damage induced-apoptosis accelerates viral release, triggered by depletion of host RNA binding proteins (RBPs) from nuclear RNA bound to replicating viral sequences. Methods: Information theory-based analysis of interactions between RBPs and individual sequences in the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), Influenza A (H3N2), HIV-1, and Dengue genomes identifies strong RBP binding sites in these viral genomes. Replication and expression of viral sequences is expected to increasingly sequester RBPs - SRSF1 and RNPS1. Ordinarily, RBPs bound to nascent host transcripts prevents their annealing to complementary DNA. Their depletion induces destabilizing R-loops. Chromosomal breakage occurs when an excess of unresolved R-loops collide with incoming replication forks, overwhelming the DNA repair machinery. We estimated stoichiometry of inhibition of RBPs in host nuclear RNA by counting competing binding sites in replicating viral genomes and host RNA. Results: Host RBP binding sites are frequent and conserved among different strains of RNA viral genomes. Similar binding motifs of SRSF1 and RNPS1 explain why DNA damage resulting from SRSF1 depletion is complemented by expression of RNPS1. Clustering of strong RBP binding sites coincides with the distribution of RNA-DNA hybridization sites across the genome. SARS-CoV-2 replication is estimated to require 32.5-41.8 hours to effectively compete for binding of an equal proportion of SRSF1 binding sites in host encoded nuclear RNAs. Significant changes in expression of transcripts encoding DNA repair and apoptotic proteins were found in an analysis of influenza A and Dengue-infected cells in some individuals. Conclusions: R-loop-induced apoptosis indirectly resulting from viral replication could release significant quantities of membrane-associated virions into neighboring alveoli. These could infect adjacent pneumocytes and other tissues, rapidly compromising lung function, causing multiorgan system failure and other described symptoms.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 943
Author(s):  
Peter K. Rogan ◽  
Eliseos J. Mucaki ◽  
Ben C. Shirley

Background: Certain riboviruses can cause severe pulmonary complications leading to death in some infected patients. We propose that DNA damage induced-apoptosis accelerates viral release, triggered by depletion of host RNA binding proteins (RBPs) from nuclear RNA bound to replicating viral sequences. Methods: Information theory-based analysis of interactions between RBPs and individual sequences in the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), Influenza A (H3N1), HIV-1, and Dengue genomes identifies strong RBP binding sites in these viral genomes. Replication and expression of viral sequences is expected to increasingly sequester RBPs - SRSF1 and RNPS1. Ordinarily, RBPs bound to nascent host transcripts prevents their annealing to complementary DNA. Their depletion induces destabilizing R-loops. Chromosomal breakage occurs when an excess of unresolved R-loops collide with incoming replication forks, overwhelming the DNA repair machinery. We estimated stoichiometry of inhibition of RBPs in host nuclear RNA by counting competing binding sites in replicating viral genomes and host RNA. Results: Host RBP binding sites are frequent and conserved among different strains of RNA viral genomes. Similar binding motifs of SRSF1 and RNPS1 explain why DNA damage resulting from SRSF1 depletion is complemented by expression of RNPS1. Clustering of strong RBP binding sites coincides with the distribution of RNA-DNA hybridization sites across the genome. SARS-CoV-2 replication is estimated to require 32.5-41.8 hours to effectively compete for binding of an equal proportion of SRSF1 binding sites in host encoded nuclear RNAs. Significant changes in expression of transcripts encoding DNA repair and apoptotic proteins were found in an analysis of influenza A and Dengue-infected cells in some individuals. Conclusions: R-loop-induced apoptosis indirectly resulting from viral replication could release significant quantities of membrane-associated virions into neighboring alveoli. These could infect adjacent pneumocytes and other tissues, rapidly compromising lung function, causing multiorgan system failure and other described symptoms.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 891-891
Author(s):  
Katia Beider ◽  
Valeria Voevoda ◽  
Hanna Bitner ◽  
Evgenia Rosenberg ◽  
Hila Magen ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is a neoplastic disorder that is characterized by clonal proliferation of plasma cells in the bone marrow (BM). Despite the initial efficacious treatment, MM patients often become refractory to common anti-MM drugs, therefore novel therapies are in need. Pan-histone deacetylase (HDAC) inhibitor panobinostat exerts multiple cytotoxic actions in MM cells in vitro, and was approved for the treatment of relapsed/refractory MM in combination with bortezomib and dexamethasone. Although having promising anti-MM properties, panobinostat lacks therapeutic activity as monotherapy. The aim of the current study was to elucidate the mechanisms underlying MM resistance to panobinostat and to define strategies to overcome it. Results: Panobinostat at the low concentrations (IC50 5-30 nM) suppressed the viability in MM cell lines (n=7) and primary CD138+ cells from MM patients (n=8) in vitro. Sensitivity to panobinostat correlated with reduced expression of chemokine receptor CXCR4, while overexpression of CXCR4 or its ligand CXCL12 in RPMI8226 and CAG MM cell lines significantly (p<0.001) increased their resistance to panobinostat, pointing to the role of the CXCR4 axis in HDACi response. Notably, similar expression levels of class I HDACs (HDAC1-3) were detected in MM cells with either low or high CXCR4. Interaction with BM stromal cells that represent the source of CXCL12 also protected MM cells from panobinostat-induced apoptosis, further strengthening a role for CXCR4 downstream pathway. Decreased sensitivity to cytotoxic effect was concomitant with reduced histone (H3K9 and H4K8) acetylation in response to panobinostat treatment. In addition, resistance to HDACi was associated with the reversible G0/G1 cell growth arrest, whereas sensitivity was characterized by apoptotic cell death. Analysis of intra-cellular signaling mediators involved in CXCR4-mediated HDACi resistance revealed the pro-survival AKT/mTOR pathway to be regulated by both CXCR4 over-expression and interaction with BMSCs. Combining panobinostat with mTOR inhibitor everolimus abrogated the resistance and induced synergistic cell death of MM cell lines and primary MM cells, but not of normal mononuclear cells (CI<0.4). This effect was concurrent with the increase in DNA double strand breaks, histone H2AX phosphorylation, loss of Dψm, cytochrome c release, caspase 3 activation and PARP cleavage. The increase in DNA damage upon combinational treatment was not secondary to the apoptotic DNA fragmentation, as it occurred similarly when apoptosis onset was blocked by caspase inhibitor z-VAD-fmk. Kinetics studies also confirmed that panobinostat-induced DNA damage preceded apoptosis induction. Strikingly, combined panobinostat/everolimus treatment resulted in sustained DNA damage and irreversible suppression of MM cell proliferation accompanied by robust apoptosis, in contrast to the modest effects induced by single agent. Gene expression analysis revealed distinct genetic profiles of single versus combined exposures. Whereas panobinostat increased the expression of cell cycle inhibitors GADD45G and p21, co-treatment with everolimus abrogated the increase in p21 and synergistically downregulated DNA repair genes, including RAD21, Ku70, Ku80 and DNA-PKcs. Furthermore, combined treatment markedly decreased both mRNA and protein expression of anti-apoptotic factors survivin and BCL-XL, checkpoint regulator CHK1, and G2/M-specific factors PLK1, CDK1 and cyclin B1, therefore suppressing the DNA damage repair and inhibiting mitotic progression. Given the anti-apoptotic role of p21, the synergistic lethal effect of everolimus could be attributed to its ability to suppress p21 induction by panobinostat ensuing the shift in the DNA damage response toward apoptosis. Conclusions: Collectively, our findings indicate that CXCR4/CXCL12 activity promotes the resistance of MM cells to HDACi with panobinostat through mTOR activation. Inhibition of mTOR by everolimus synergizes with panobinostat by simultaneous suppression of p21, G2/M mitotic factors and DNA repair machinery, rendering MM cells incapable of repairing accumulated DNA damage and promoting their apoptosis. Our results unravel the mechanism responsible for strong synergistic anti-MM activity of dual HDAC and mTOR inhibition and provide the rationale for a novel therapeutic strategy to eradicate MM. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 477 (1) ◽  
pp. 137-160 ◽  
Author(s):  
Logan Slade ◽  
Dipsikha Biswas ◽  
Francis Ihionu ◽  
Yassine El Hiani ◽  
Petra C. Kienesberger ◽  
...  

Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy with critical roles in several cancers. Lysosomal autophagy promotes cancer survival through the degradation of toxic molecules and the maintenance of adequate nutrient supply. Doxorubicin (DOX) is the standard of care treatment for triple-negative breast cancer (TNBC); however, chemoresistance at lower doses and toxicity at higher doses limit its usefulness. By targeting pathways of survival, DOX can become an effective antitumor agent. In this study, we examined the role of TFEB in TNBC and its relationship with autophagy and DNA damage induced by DOX. In TNBC cells, TFEB was hypo-phosphorylated and localized to the nucleus upon DOX treatment. TFEB knockdown decreased the viability of TNBC cells while increasing caspase-3 dependent apoptosis. Additionally, inhibition of the TFEB-phosphatase calcineurin sensitized cells to DOX-induced apoptosis in a TFEB dependent fashion. Regulation of apoptosis by TFEB was not a consequence of altered lysosomal function, as TFEB continued to protect against apoptosis in the presence of lysosomal inhibitors. RNA-Seq analysis of MDA-MB-231 cells with TFEB silencing identified a down-regulation in cell cycle and homologous recombination genes while interferon-γ and death receptor signaling genes were up-regulated. In consequence, TFEB knockdown disrupted DNA repair following DOX, as evidenced by persistent γH2A.X detection. Together, these findings describe in TNBC a novel lysosomal independent function for TFEB in responding to DNA damage.


2020 ◽  
Author(s):  
Clémentine Delan-Forino ◽  
Christos Spanos ◽  
Juri Rappsilber ◽  
David Tollervey

ABSTRACTDuring nuclear surveillance in yeast, the RNA exosome functions together with the TRAMP complexes. These include the DEAH-box RNA helicase Mtr4 together with an RNA-binding protein (Air1 or Air2) and a poly(A) polymerase (Trf4 or Trf5). To better determine how RNA substrates are targeted, we analyzed protein and RNA interactions for TRAMP components. Mass spectrometry identified three distinct TRAMP complexes formed in vivo. These complexes preferentially assemble on different classes of transcripts. Unexpectedly, on many substrates, including pre-rRNAs and pre-mRNAs, binding specificity was apparently conferred by Trf4 and Trf5. Clustering of mRNAs by TRAMP association showed co-enrichment for mRNAs with functionally related products, supporting the significance of surveillance in regulating gene expression. We compared binding sites of TRAMP components with multiple nuclear RNA binding proteins, revealing preferential colocalization of subsets of factors. TRF5 deletion reduced Mtr4 recruitment and increased RNA abundance for mRNAs specifically showing high Trf5 binding.


Acta Naturae ◽  
2017 ◽  
Vol 9 (2) ◽  
pp. 4-16 ◽  
Author(s):  
E. E. Alemasova ◽  
O. I. Lavrik

RNA-binding proteins (RBPs) regulate RNA metabolism, from synthesis to decay. When bound to RNA, RBPs act as guardians of the genome integrity at different levels, from DNA damage prevention to the post-transcriptional regulation of gene expression. Recently, RBPs have been shown to participate in DNA repair. This fact is of special interest as DNA repair pathways do not generally involve RNA. DNA damage in higher organisms triggers the formation of the RNA-like polymer - poly(ADP-ribose) (PAR). Nucleic acid-like properties allow PAR to recruit DNA- and RNA-binding proteins to the site of DNA damage. It is suggested that poly(ADP-ribose) and RBPs not only modulate the activities of DNA repair factors, but that they also play an important role in the formation of transient repairosome complexes in the nucleus. Cytoplasmic biomolecules are subjected to similar sorting during the formation of RNA assemblages by functionally related mRNAs and promiscuous RBPs. The Y-box-binding protein 1 (YB-1) is the major component of cytoplasmic RNA granules. Although YB-1 is a classic RNA-binding protein, it is now regarded as a non-canonical factor of DNA repair.


2008 ◽  
Vol 179 (4S) ◽  
pp. 424-424
Author(s):  
Hong-lin Devlin ◽  
Philip C Mack ◽  
Rebekah A Burich ◽  
Paul H Gumerlock ◽  
Hsing-Jien Kung ◽  
...  

2021 ◽  
Author(s):  
Dheva Setiaputra ◽  
Cristina Escribano-Diaz ◽  
Julia K. Reinert ◽  
Pooja Sadana ◽  
Dali Zong ◽  
...  

SummaryThe chromatin-binding protein 53BP1 promotes DNA repair by orchestrating the recruitment of downstream effectors including PTIP, RIF1 and shieldin to DNA double-strand break sites. While how PTIP recognizes 53BP1 is known, the molecular details of RIF1 recruitment to DNA damage sites remains undefined. Here, we report that RIF1 is a phosphopeptide-binding protein that directly interacts with three phosphorylated 53BP1 epitopes. The RIF1-binding sites on 53BP1 share an essential LxL motif followed by two closely apposed phosphorylated residues. Simultaneous mutation of these sites on 53BP1 abrogates RIF1 accumulation into ionizing radiation-induced foci, but surprisingly only fully compromises 53BP1-dependent DNA repair when an alternative mode of shieldin recruitment to DNA damage sites is also disabled. Intriguingly, this alternative mode of recruitment still depends on RIF1 but does not require its interaction with 53BP1. RIF1 therefore employs phosphopeptide recognition to promote DNA repair but also modifies shieldin action independently of 53BP1 binding.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Basudeb Das ◽  
Neha Jain ◽  
Bibekanand Mallick

AbstractResistance to doxorubicin (DOX) is an obstacle to successful sarcoma treatment and a cause of tumor relapse, with the underlying molecular mechanism still unknown. PIWI-interacting RNAs (piRNAs) have been shown to enhance patient outcomes in cancers. However, there are few or no reports on piRNAs affecting chemotherapy in cancers, including fibrosarcoma. The current study aims to investigate the relationship between piR-39980 and DOX resistance and the underlying mechanisms. We reveal that piR-39980 is less expressed in DOX-resistant HT1080 (HT1080/DOX) fibrosarcoma cells. Our results show that inhibition of piR-39980 in parental HT1080 cells induces DOX resistance by attenuating intracellular DOX accumulation, DOX-induced apoptosis, and anti-proliferative effects. Its overexpression in HT1080/DOX cells, on the other hand, increases DOX sensitivity by promoting intracellular DOX accumulation, DNA damage, and apoptosis. The dual-luciferase reporter assay indicates that piR-39980 negatively regulates RRM2 and CYP1A2 via direct binding to their 3′UTRs. Furthermore, overexpressing RRM2 induces DOX resistance of HT1080 cells by rescuing DOX-induced DNA damage by promoting DNA repair, whereas CYP1A2 confers resistance by decreasing intracellular DOX accumulation, which piR-39980 restores. This study reveals that piR-39980 could reduce fibrosarcoma resistance to DOX by modulating RRM2 and CYP1A2, implying that piRNA can be used in combination with DOX.


2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Sharmin Afroz ◽  
Ravendra Garg ◽  
Michel Fodje ◽  
Sylvia van Drunen Littel-van den Hurk

ABSTRACTVP8, theUL47gene product in bovine herpesvirus-1 (BoHV-1), is a major tegument protein that is essential for virus replicationin vivo. The major DNA damage response protein, ataxia telangiectasia mutated (ATM), phosphorylates Nijmegen breakage syndrome (NBS1) and structural maintenance of chromosome-1 (SMC1) proteins during the DNA damage response. VP8 was found to interact with ATM and NBS1 during transfection and BoHV-1 infection. However, VP8 did not interfere with phosphorylation of ATM in transfected or BoHV-1-infected cells. In contrast, VP8 inhibited phosphorylation of both NBS1 and SMC1 in transfected cells, as well as in BoHV-1-infected cells, but not in cells infected with a VP8 deletion mutant (BoHV-1ΔUL47). Inhibition of NBS1 and SMC1 phosphorylation was observed at 4 h postinfection by nuclear VP8. Furthermore, UV light-induced cyclobutane pyrimidine dimer (CPD) repair was reduced in the presence of VP8, and VP8 in fact enhanced etoposide or UV-induced apoptosis. This suggests that VP8 blocks the ATM/NBS1/SMC1 pathway and inhibits DNA repair. VP8 induced apoptosis in VP8-transfected cells through caspase-3 activation. The fact that BoHV-1 is known to induce apoptosis through caspase-3 activation is in agreement with this observation. The role of VP8 was confirmed by the observation that BoHV-1 induced significantly more apoptosis than BoHV-1ΔUL47. These data reveal a potential role of VP8 in the modulation of the DNA damage response pathway and induction of apoptosis during BoHV-1 infection.IMPORTANCETo our knowledge, the effect of BoHV-1 infection on the DNA damage response has not been characterized. Since BoHV-1ΔUL47 was previously shown to be avirulentin vivo, VP8 is critical for the progression of viral infection. We demonstrated that VP8 interacts with DNA damage response proteins and disrupts the ATM-NBS1-SMC1 pathway by inhibiting phosphorylation of DNA repair proteins NBS1 and SMC1. Furthermore, interference of VP8 with DNA repair was correlated with decreased cell viability and increased DNA damage-induced apoptosis. These data show that BoHV-1 VP8 developed a novel strategy to interrupt the ATM signaling pathway and to promote apoptosis. These results further enhance our understanding of the functions of VP8 during BoHV-1 infection and provide an additional explanation for the reduced virulence of BoHV-1ΔUL47.


Sign in / Sign up

Export Citation Format

Share Document