scholarly journals Longitudinal variations of brain functional connectivity: A case report study based on a mouse model of epilepsy

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 144 ◽  
Author(s):  
A. Erramuzpe ◽  
J. M. Encinas ◽  
A. Sierra ◽  
M. Maletic-Savatic ◽  
A.L. Brewster ◽  
...  

Brain Functional Connectivity (FC) quantifies statistical dependencies between areas of the brain.FC has been widely used to address altered function of brain circuits in control conditions compared to different pathological states, including epilepsy, a major neurological disorder. However, FC also has the as yet unexplored potential to help us understand the pathological transformation of the brain circuitry.Our hypothesis is that FC can differentiate global brain interactions across a time-scale of days. To this end, we present a case report study based on a mouse model for epilepsy and analyze longitudinal intracranial electroencephalography data of epilepsy to calculate FC across three stages:  1, the initial insult (status epilepticus); 2, the latent period, when epileptogenic networks emerge; and 3, chronic epilepsy, when unprovoked seizures occur as spontaneous events.We found that the overall network FC at low frequency bands decreased immediately after status epilepticus was provoked, and increased monotonously later on during the latent period. Overall, our results demonstrate the capacity  of FC to address longitudinal variations of brain connectivity across the establishment of pathological states.

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 144
Author(s):  
A. Erramuzpe ◽  
J. M. Encinas ◽  
A. Sierra ◽  
M. Maletic-Savatic ◽  
A.L. Brewster ◽  
...  

Brain Functional Connectivity (FC) quantifies statistical dependencies between areas of the brain. FC has been widely used to address altered function of brain circuits in control conditions compared to different pathological states, including epilepsy, a major neurological disorder. However, FC also has the as yet unexplored potential to help us understand the pathological transformation of the brain circuitry. Our hypothesis is that FC can differentiate global brain interactions across a time-scale of days. To this end, we present a case report study based on a mouse model for epilepsy and analyze longitudinal intracranial electroencephalography data of epilepsy to calculate FC changes from the initial insult (status epilepticus) and over the latent period, when epileptogenic networks emerge, and at chronic epilepsy, when unprovoked seizures occur as spontaneous events. We found that the overall network FC at low frequency bands decreased immediately after status epilepticus was provoked, and increased monotonously later on during the latent period. Overall, our results demonstrate the capacity of FC to address longitudinal variations of brain connectivity across the establishment of pathological states.


2020 ◽  
Vol 6 (2) ◽  
pp. 120-131
Author(s):  
Shangen Zhang ◽  
Jingnan Sun ◽  
Xiaorong Gao

In the fatigue state, the neural response characteristics of the brain might be different from those in the normal state. Brain functional connectivity analysis is an effective tool for distinguishing between different brain states. For example, comparative studies on the brain functional connectivity have the potential to reveal the functional differences in different mental states. The purpose of this study was to explore the relationship between human mental states and brain control abilities by analyzing the effect of fatigue on the brain response connectivity. In particular, the phase‐scrambling method was used to generate images with two noise levels, while the N‐back working memory task was used to induce the fatigue state in subjects. The paradigm of rapid serial visual presentation (RSVP) was used to present visual stimuli. The analysis of brain connections in the normal and fatigue states was conducted using the open‐source eConnectome toolbox. The results demonstrated that the control areas of neural responses were mainly distributed in the parietal region in both the normal and fatigue states. Compared to the normal state, the brain connectivity power in the parietal region was significantly weakened under the fatigue state, which indicates that the control ability of the brain is reduced in the fatigue state.


SLEEP ◽  
2020 ◽  
Vol 43 (12) ◽  
Author(s):  
Raphael Vallat ◽  
Alain Nicolas ◽  
Perrine Ruby

Abstract Why do some individuals recall dreams every day while others hardly ever recall one? We hypothesized that sleep inertia—the transient period following awakening associated with brain and cognitive alterations—could be a key mechanism to explain interindividual differences in dream recall at awakening. To test this hypothesis, we measured the brain functional connectivity (combined electroencephalography–functional magnetic resonance imaging) and cognition (memory and mental calculation) of high dream recallers (HR, n = 20) and low dream recallers (LR, n = 18) in the minutes following awakening from an early-afternoon nap. Resting-state scans were acquired just after or before a 2 min mental calculation task, before the nap, 5 min after awakening from the nap, and 25 min after awakening. A comic was presented to the participants before the nap with no explicit instructions to memorize it. Dream(s) and comic recall were collected after the first post-awakening scan. As expected, between-group contrasts of the functional connectivity at 5 min post-awakening revealed a pattern of enhanced connectivity in HR within the default mode network (DMN) and between regions of the DMN and regions involved in memory processes. At the behavioral level, a between-group difference was observed in dream recall, but not comic recall. Our results provide the first evidence that brain functional connectivity right after awakening is associated with interindividual trait differences in dream recall and suggest that the brain connectivity of HR at awakening facilitates the maintenance of the short-term memory of the dream during the sleep–wake transition.


Author(s):  
Hesam Ahmadi ◽  
Emad Fatemizadeh ◽  
Ali Motie Nasrabadi

Purpose: Graph theory is a widely used and reliable tool to quantify brain connectivity. Brain functional connectivity is modeled as graph edges employing correlation coefficients. The correlation coefficients can be used as the weight that shows the power of connectivity between two nodes or can be binarized to show the existence of a connection regardless of its strength. To binarize the brain graph two approaches, namely fixed threshold and fixed density are often used. Materials and Methods: This paper aims to investigate the difference between weighted or binarized graphs in brain functional connectivity analysis. To achieve this goal, the brain connectivity matrices are generated employing the functional Magnetic Resonance Imaging (fMRI) data of Alzheimer's Disease (AD). After preprocessing the data, weighted and binarized connectivity matrices are constructed using a fixed threshold and fixed density techniques. Graph global features are extracted and a non-parametric statistical test is performed to analyze the performance of the methods. Results: Results show that all three methods are powerful in distinguishing the healthy group from AD subjects. The P-Values of the weighted graph is close to the fixed threshold method. Conclusion: Also, it is worthwhile mentioning that the fixed threshold method is robust in changing the threshold while the fixed density method is very sensitive. On the other hand, graph global measures such as clustering coefficient and transitivity, regardless of the method, show significant differences between the control and AD groups. Furthermore, the P-Values of modularity measure are very varied according to the method and the selected threshold.


2018 ◽  
Author(s):  
Jin Yan ◽  
Yingying Zhu

AbstractFunctional brain network has been widely studied in many previous work for brain disorder diagnosis and brain network analysis. However, most previous work focus on static dynamic brain network research. Lots of recent work reveals that the brain shows dynamic activity even in resting state. Such dynamic brain functional connectivity reveals discriminative patterns for identifying many brain disorders. Current sliding window based dynamic brain connectivity framework are not easy to be applied to real clinical applications due to many issues: First, how to set up the optimal sliding window size and how to determine the threshold for the brain connectivity patterns. Secondly, how to represent the high dimensional dynamic brain connectivity pattern in a low dimensional representations for diagnosis purpose. Last, how to deal with the different length dynamic brain network patterns especially when the raw data are of different length. In order to address all those above issues, we proposed a new framework, which employs multiple scale sliding windows and automatically learns a sparse and low ran dynamic brain functional connectivity patterns from raw fMRI data. Furthermore, we are able to measure different length dynamic brain functional connectivity patterns in an equal space by learning a sparse coded convolutional filters. We have evaluated our method with state of the art dynamic brain network methods and the results demonstrated the strong potential of our methods for brain disorder diagnosis in real clinical applications.


Biostatistics ◽  
2018 ◽  
Vol 21 (4) ◽  
pp. 641-658
Author(s):  
Yumou Qiu ◽  
Xiao-Hua Zhou

Summary Alzheimer’s disease (AD) is a chronic neurodegenerative disease that changes the functional connectivity of the brain. The alteration of the strong connections between different brain regions is of particular interest to researchers. In this article, we use partial correlations to model the brain connectivity network and propose a data-driven procedure to recover a $c$-level partial correlation graph based on PET data, which is the graph of the absolute partial correlations larger than a pre-specified constant $c$. The proposed procedure is adaptive to the “large p, small n” scenario commonly seen in whole brain studies, and it incorporates the variation of the estimated partial correlations, which results in higher power compared to the existing methods. A case study on the FDG-PET images from AD and normal control (NC) subjects discovers new brain regions, Sup Frontal and Mid Frontal in the frontal lobe, which have different brain functional connectivity between AD and NC.


2021 ◽  
Author(s):  
Geisa B. Gallardo‐Moreno ◽  
Francisco J. Alvarado‐Rodríguez ◽  
Rebeca Romo‐Vázquez ◽  
Hugo Vélez‐Pérez ◽  
Andrés A. González‐Garrido

2020 ◽  
Author(s):  
Chadi G. Abdallah ◽  
Kyung-Heup Ahn ◽  
Lynnette A. Averill ◽  
Samaneh Nemati ◽  
Christopher L. Averill ◽  
...  

ABSTRACTOver the past decade, various N-Methyl-D-Aspartate modulators have failed in clinical trials, underscoring the challenges of developing novel rapid-acting antidepressants based solely on the receptor or regional targets of ketamine. Thus, identifying the effect of ketamine on the brain circuitry and networks is becoming increasingly critical. In this longitudinal functional magnetic resonance imaging study of data from 265 participants, we used a validated predictive model approach that allows the full assessment of brain functional connectivity, without the need for seed selection or connectivity summaries. First, we identified a connectome fingerprint (CFP) in healthy participants (Cohort A, n=25) during intravenous infusion of a subanesthetic dose of ketamine, compared to normal saline. We then demonstrated the robustness and reproducibility of the discovered Ketamine CFP in two separate healthy samples (Cohort B, n=22; Cohort C, n=18). Finally, we investigated the Ketamine CFP connectivity at 1-week post treatment in major depressive disorder patients randomized to 8 weeks of sertraline or placebo (Cohort D, n=200). We found a significant, robust, and reproducible Ketamine CFP, consistent with reduced connectivity within the primary cortices and within the executive network, but increased connectivity between the executive network and the rest of the brain. Compared to placebo, the Ketamine CFP connectivity changes at 1-week predicted response to sertraline at 8-weeks. In each of Cohort A-C, ketamine significantly increased connectivity in a previously identified Antidepressant CFP. Investigating the brain connectivity networks, we successfully identified a robust and reproducible ketamine biomarker that is related to the mechanisms of antidepressants.Graphical Abstract


2019 ◽  
Vol 34 (4) ◽  
pp. 191-197
Author(s):  
Christof Karmonik ◽  
Makiko Hirata ◽  
Saba Elias ◽  
J Todd Frazier

Around 1741, composer Johann Sebastian Bach published a long and complicated keyboard piece, calling it Aria with diverse variations for a harpsichord with two manuals. It was the capstone of a publication project called German Clavier-Übung (Keyboard Practice) where Bach wanted to show what was possible at the keyboard in terms of technical development, virtuosic finesse and compositional sophistication. The music is meticulously patterned, beginning with a highly ornamented Aria, the bass line of which fuels the 30 variations that follow. The piece is clearly divided into two parts with the second half beginning with an overture with a fanfare opening, in variation 16. The piece ends as it begins, with the return of the Aria. Here, we present an investigation into activation and connectivity in the brain of a pianist, who listened to her own recording of the “Goldberg” variation while undergoing a fMRI examination. Similarity of brain connectivity is quantified and compared with the subjective scores provided by the subject.


Sign in / Sign up

Export Citation Format

Share Document