scholarly journals Biological performance of a bioabsorbable Poly (L-Lactic Acid) produced in polymerization unit: in vivo studies

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1275
Author(s):  
Mariana Xavier ◽  
Nayla Farez ◽  
Paola Luciana Salvatierra ◽  
Andre Luiz Jardini ◽  
Paulo Kharmandayan ◽  
...  

Background: The biomaterials engineering goal is to manufacture a biocompatible scaffold that adequately supports or improves tissue regeneration after implantation of the biomaterial in the injured area. Many requirements are demanded for a biomaterial, such as biocompatibility, elasticity, degradation time, and a very important factor is its cost of importation or synthesis, making its application inaccessible to some countries. Studies about biomaterials market show that Polylactic acid (PLLA) is one of the most used polymers, but expensive to produce. It becomes important to prove the biocompatibility of the new PLLA and to find strategies to produce biocompatible biopolymers at an acceptable production cost. Methods: In this work, the polylactic acid biomaterial was synthesized by ring-opening polymerization. The polymer was submitted to initial in vivo biocompatibility studies in 12 New Zealand female rabbits, assigned to two groups: (1) Lesion and PLLA group (n = 6), (2) Lesion No PLLA group (n = 6). Each group was divided into two subgroups at six and nine months post-surgical time. Before euthanasia clinical and biochemical studies were performed and after that tomographic (CT), histological (Hematoxylin and Eosin and Masson's trichrome) and histomorphometric analyses were performed to evaluate the injury site and prove biocompatibility. The final cost of this polymer was analyzed. Results: The statistical studies of hemogram and hepatocyte enzymes, showed that there were no significant differences between the groups for any of the times studied, in any of the variables considered and the results of CT and histology showed that there was an important process of neoregeneration. The cost analysis showed the biopolymer synthesis is between R$3,06 - R$5,49 cheaper than the import cost. Conclusions: It was possible to synthesize the PLLA biopolymer by cyclic ring opening, which proved to be biocompatible, potential osteoregenerative and cheaper than other imported biopolymers.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5440
Author(s):  
Maria Cannio ◽  
Devis Bellucci ◽  
Judith A. Roether ◽  
Dino. N. Boccaccini ◽  
Valeria Cannillo

The use of bioactive glasses in dentistry, reconstructive surgery, and in the treatment of infections can be considered broadly beneficial based on the emerging literature about the potential bioactivity and biocompatibility of these materials, particularly with reference to Bioglass® 45S5, BonAlive® and 19-93B3 bioactive glasses. Several investigations have been performed (i) to obtain bioactive glasses in different forms, such as bulk materials, powders, composites, and porous scaffolds and (ii) to investigate their possible applications in the biomedical field. Although in vivo studies in animals provide us with an initial insight into the biological performance of these systems and represent an unavoidable phase to be performed before clinical trials, only clinical studies can demonstrate the behavior of these materials in the complex physiological human environment. This paper aims to carefully review the main published investigations dealing with clinical trials in order to better understand the performance of bioactive glasses, evaluate challenges, and provide an essential source of information for the tailoring of their design in future applications. Finally, the paper highlights the need for further research and for specific studies intended to assess the effect of some specific dissolution products from bioactive glasses, focusing on their osteogenic and angiogenic potential.


2020 ◽  
Vol 7 (5) ◽  
pp. 483-490
Author(s):  
Changyan Liang ◽  
You Ling ◽  
Feng Wei ◽  
Lijie Huang ◽  
Xiaomao Li

Abstract The biomaterials composed of mammalian extracellular matrix (ECM) have a great potential in pelvic floor tissue repair and functional reconstruction. However, bacterial infection does cause great damage to the repair function of biomaterials which is the major problem in clinical utilization. Therefore, the development of biological materials with antimicrobial effect is of great clinical significance for pelvic floor repair. Chitosan/tigecycline (CS/TGC) antibacterial biofilm was prepared by coating CS/TGC nanoparticles on mammalian-derived ECM. Infrared spectroscopy, scanning electron microscopy, bacteriostasis circle assay and static dialysis methods were used to characterize the membrane. MTS assay kit and DAPI fluorescence staining were used to evaluate cytotoxicity and cell adhesion. The biocompatibility was assessed by subabdominal implantation model in goats. Subcutaneous antimicrobial test in rabbit back was used to evaluate the antimicrobial and repairing effects on the infected wounds in vivo. Infrared spectroscopy showed that the composite coating had been successfully modified. The antibacterial membrane retained the main structure of ECM multilayer fibers. In vitro release of biomaterials showed sustained release and stability. In vivo studies showed that the antibacterial biological membrane had low cytotoxicity, fast degradation, good compatibility, anti-infection and excellent repair ability.


2020 ◽  
Vol 70 (2) ◽  
pp. 170-175 ◽  
Author(s):  
Ahmet Kinaci ◽  
Wilhelmina Bergmann ◽  
Ronald LAW Bleys ◽  
Albert van der Zwan ◽  
Tristan PC van Doormaal

The biocompatibility, biodegradation, feasibility, and efficacy of medical devices like dural sealants and substitutes are often evaluated in various animal models. However, none of these studies explain the rationale for choosing a particular species, and a systematic interspecies comparison of the dura is not available. We hypothesized that histologic characteristics of the dura would differ among species. We systematically investigated basic characteristics of the dura, including thickness, composition, and fibroblast orientation of the dura mater, in 34 samples representing 10 animal species and compared these features with human dura by using hematoxylin and eosin staining and light microscopy. Dura showed many similarities between species in terms of composition. In all species, dura consisted of at least one fibrovascular layer, which contained collagen, fibroblasts, and blood vessels, and a dural border cell layer beneath the fibrovascular layer. Differences between species included the number of fibrovascular layers, fibroblast orientation, and dural thickness. Human dura was the thickest (564 μm) followed by equine (313 μm), bovine (311 μm), and porcine (304 μm) dura. Given the results of this study and factors such as gross anatomy, feasibility, housing, and ethical considerations, we recommend the use of a porcine model for dural research, especially for in vivo studies.


2020 ◽  
Vol 8 (4) ◽  
pp. 108
Author(s):  
Michele Tepedino ◽  
Maciej Iancu Potrubacz ◽  
Lorenzo Arrizza ◽  
Manuela Russo ◽  
Francesco Cavarra ◽  
...  

The purpose of this study was to evaluate the shear bond strength and adhesive remnant index ARI) of orthodontic brackets following enamel conditioning with acid etching, hydroabrasion, and with both procedures. Thirty extracted human premolars were divided into three groups and received either acid etching, hydroabrasion or both procedures. Orthodontic brackets were bonded with composite resin. Shear bond strength was tested with a tensile machine, then the teeth were observed under a stereomicroscope to evaluate ARI scores. The enamel morphology after each conditioning method was evaluated with scanning electron microscope imaging. A one-way ANOVA and a Kruskal−Wallis H test were used to compare the bond strength and the ARI scores among the three groups. Hydroabrasion alone produced shear bond strength values below clinical acceptability, while the combination of acid etching and hydroabrasion produced the highest values. The ARI scores in the hydroabrasion group were significantly different from the other groups. Hydroabrasion followed by acid etching was effective in increasing the shear bond strength of orthodontic brackets. Further in vivo studies are needed to confirm the cost and benefits of this technique.


2017 ◽  
Vol 92 (3) ◽  
pp. 298-308 ◽  
Author(s):  
E.V.N. Beshay

AbstractHymenolepis nana is a common intestinal tapeworm that affects humans. Drugs are available for the treatment of this infection, including praziquantel (PZQ), nitazoxanide and niclosamide. Although the drug of choice is praziquantel, due to its high cure rates, indicators of the development of PZQ resistance by different parasites have begun to appear over recent decades. Therefore, this study was a trial to find an alternative to PZQ by assessing the activity of the crude aqueous extract of the medicinal herb Artemisia absinthium against H. nana. In vitro, the extract was used against adult worms at concentrations of 1 and 5 mg/ml, in comparison with 1 mg/ml of PZQ. The times of worm paralysis and death were determined. Ultrastructural morphological changes were studied using transmission electron microscopy (TEM). For the in vivo study, infected mice were divided into untreated, PZQ-treated and A. absinthium-treated groups (400 mg/kg and 800 mg/kg). Pre- and post-treatment egg counts per gram of faeces (EPG) were performed; then, the reduction percentages of the EPG and worm burden were calculated. The best results were obtained with praziquantel. Artemisia absinthium induced worm paralysis, death and ultrastructural alterations, such as tegumental damage, lipid accumulation, and destruction of the nephridial canal and the intrauterine eggs, in a dose-dependent manner. Additionally, significant reductions in the EPG and worm burden were recorded in A. absinthium-treated mice. Although the results obtained with A. absinthium were promising and comparable to PZQ, further studies using different extracts, active ingredients and concentrations against different parasites should be conducted.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


Sign in / Sign up

Export Citation Format

Share Document