scholarly journals AGROTECHNICAL ASPECTS OF THE WORKING UNIT APPLICATION FOR UNDERGROUND SOIL TREATMENT

2018 ◽  
Vol 12 (3) ◽  
pp. 82-85
Author(s):  
Ильнур Салахов ◽  
Ilnur Salakhov

Abstract. The subsoiling tillage is aimed at weakening the surface runoff of water and transferring it to the subsurface. The main methods of non-plowing treatment are subsoiling, flat and chisel processing, milling, chinking, deepening of the arable layer of the soil. However, the working units of existing tools for subsoiling tillage do not provide sufficient accumulation and preservation of moisture in the soil, its optimum density for the development of the root system of plants, and are characterized by increased energy intensity. This article presents the agrotechnical aspects of subsoiling, which contributes to a decrease in the development of erosion processes and an increase in moisture accumulation in the soil in conditions of a deficiency in soil moisture. The description of the soil-cultivating tool with working units of drive action is given. The results of the influence of the proposed treatment method on the agrotechnical indices of the soil are obtained.

Author(s):  
Valery Yashin

Представлены материалы исследований формирования режима влажности и динамики грунтовых вод орошаемых солонцовых комплексных почв при различных способах полива, проведенные в Волгоградском Заволжье. Установлена значительная неравномерность распределения влажности почвы при поливах дождеванием. Отмечается поверхностный сток по микрорельефу до 30% от поливной нормы, что приводит к недостаточности увлажнения корневой зоны на солонцах и переувлажнению почв в понижениях микрорельефа и потере оросительной воды на инфильтрационное питание грунтовых вод.The article presents the materials of research on the formation of the humidity regime and dynamics of ground water of irrigated saline complex soils under various irrigation methods, conducted in the Volgograd Zavolzhye. A significant unevenness in the distribution of soil moisture during irrigation with sprinkling has been established. There is a surface runoff on the microrelief of up to 30% of the irrigation norm, which leads to insufficient moisture of the root zone on the salt flats and waterlogging of the soil in the microrelief depressions and loss of irrigation water for infiltration feed of ground water.


2021 ◽  
Vol 29 (7) ◽  
pp. 2411-2428
Author(s):  
Robin K. Weatherl ◽  
Maria J. Henao Salgado ◽  
Maximilian Ramgraber ◽  
Christian Moeck ◽  
Mario Schirmer

AbstractLand-use changes often have significant impact on the water cycle, including changing groundwater/surface-water interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These conditions were found to closely echo those results from Swiss catchments of similar characteristics.


2021 ◽  
Vol 25 (7) ◽  
pp. 26-31
Author(s):  
M.P. Fedorov ◽  
V.I. Maslikov ◽  
A.V. Chechevichkin ◽  
V.N. Chechevichkin ◽  
L.A. Yakunin

The possibility of using sorbents from FOPS® filters, spent in the processes of purification of surface wastewater, is shown to intensify the growth of radish plants of the “French breakfast” variety. The ability of these waste sorbents, introduced into soil-ground substrates (SGS) as structure-forming additives enriched with microelements, was found to significantly stimulate the development of the root system with some slight inhibition of shoot growth. In the course of the experiments, the optimal value of the addition of sorbents spent in the processes of cleaning surface runoff (from roads) to the SGS was determined, which provides the greatest increase in the biomass of the root system of plants used as a test culture. It has been established that the accumulation of heavy metals (HMs) in the leaves and roots of a plant test culture increases with an increase in their content in the spent sorbents, but the actual concentrations of HMs in plants do not exceed the standards for their content in robust feed for animal husbandry. An assessment was made of the use of sorbents spent in water purification processes to create soil used in the reclamation of landfills for the placement of solid municipal waste, industrial dumps, road slopes, as well as in the restoration of forest resources and soil remediation.


2021 ◽  
Author(s):  
Vipin Kumar ◽  
Léna Cauchie ◽  
Anne-Sophie Mreyen ◽  
Philippe Cerfontaine ◽  
Mihai Micu ◽  
...  

<p>Seismic stability evaluation plays a crucial role in landslide disaster risk reduction. Related modeling also has to consider the potential influences of the rainfall on the hillslopes. This study aims at understanding the relative influence of the seismic loading and extreme cumulative rainfall on a massive active landslide in the seismically active Vrancea-Buzau region of the Romanian Carpathians (45° 30' 23" N, 26° 25' 05" E). This region has been subjected to more than 700 earthquakes (M>4) events with the highest magnitude of 7.2 (M<sub>w</sub>) during the year 1960-2019. Rainfall data of the year 2000-2019 revealed the occurrence of relatively intense rainfall events, especially during the last ten years. The landslide has an aerial dimension of ~9.1 million m². It hosts the small village of Varlaam at the toe along the Bisca River. The slope (with an average gradient of 15-20°) is covered by shrubs and scattered trees near its borders and is relatively barren in the central part. Shales with some intercalated sandstone layers belonging to the Miocene thrust belt constitute the rocks of the slope.   </p><p>A first survey involving the multi-station array and related Horizontal-to-Vertical noise Spectral Ratio (HVSR) measurements was completed in summer 2019. The findings of the HVSR were processed using the inversion process to infer the shear wave velocity distribution with depth and to detect the sliding surface of the landslide. These velocities were further used to estimate the geotechnical properties of the subsurface using the empirical equations. The HVSR based depth profiles and the Unmanned Air Vehicle based topographic information were used to take four 2D slope sections. These sections were considered for 2D discrete element modeling based stability evaluation under static and dynamic condition along with sensitivity analysis. Static simulation was used to determine the Factor of Safety (FS) using the shear strength reduction approach. Ricker wavelet was used as input seismic load in the dynamic simulation. Potential run-out and flow characteristics of the slope material were explored using the Voellmy rheology based RAMMS software. The relationship between rainfall, surface runoff, and soil moisture was also explored to understand the hydrogeological influence on slope stability.</p><p>Though the slope reveals meta-stability (1.0<FS<2.0) condition under static loading, displacement in the soil reaches up to 1.5 m that further increases to 2.8 m under dynamic loading. According to the topographic characteristics of the slope and to the presence of landslide material or intact bedrock near the surface, acceleration along the slope reaches a Peak Ground Acceleration in the range of 0.6 to 1.3g. Eight extreme rainfall events (>50mm/24 hours) during the year 2000-2019 are noted to temporally coincide with enhanced surface runoff and increased soil moisture in the region. Debris flow runout modeling indicated that the slope material may attain a maximum flow height and flow velocity of 13±0.8 m and 5±0.5 m/sec, respectively, along the river channel.</p><p><strong>Keywords: </strong>Landslide;<strong> </strong>Earthquake; Slope stability; Runout; SE Carpathian</p>


2014 ◽  
Vol 71 ◽  
pp. 125-139 ◽  
Author(s):  
Rodica Curtu ◽  
Ricardo Mantilla ◽  
Morgan Fonley ◽  
Luciana K. Cunha ◽  
Scott J. Small ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 933
Author(s):  
Xiaohe Sun ◽  
Changyuan Zhai ◽  
Shuo Yang ◽  
Haolin Ma ◽  
Chunjiang Zhao

Microwave treatment is a green and pollution-free soil disinfection method. The application of microwaves to disinfect soil before cultivation is highly important to increase crop yields and protect the ecological environment. The electromagnetic field is an important parameter influencing the soil temperature field in the process of microwave soil treatment, and the change in soil temperature directly affects soil disinfection. Therefore, this article carried out research on the heating pattern in North China loess due to microwave treatment. First, COMSOL software was employed to simulate the microwave soil treatment process to analyze microwave penetration into soil. Second, with the application of microwaves at the designed frequency produced with a 2.45-GHz tunable microwave generating microdevice, soil with water contents of 0%, 10%, 20%, and 30% was treated for 10~60 s (at 10-s time intervals), and experiments on the influence of the microwave output power, treatment time, and soil moisture content on the soil temperature were performed via the controlled variable method. The simulation results indicate that with increasing soil moisture content, the microwave frequency inside the soil model increases, and the electric field intensity value decreases in the model at the same depth. After microwaves traverse through the 20-cm soil model, the incident field strength is three orders of magnitude lower than the outgoing field strength. The results of the microwave soil treatment experiment reveal that: (1) Compared to microwave output power levels of 1.8 and 1.6 kW, a level of 2 kW is more suitable for microwave soil disinfection. (2) After treatment, the highest temperature occurs on the soil surface, not within the soil. (3) The location of the highest soil internal temperature after microwave treatment increasingly approaches the soil surface with increasing soil moisture content, and the microwave output power does not affect the location of the highest soil internal temperature. Combining the electromagnetic field simulation and microwave soil treatment experiment results, it was found that the higher the field strength is, the higher the temperature value, and the highest soil internal temperature after microwave treatment often occurs at the first electromagnetic wave peak.


2021 ◽  
Author(s):  
Martin Bouda ◽  
Jan Vanderborght ◽  
Mathieu Javaux

<p>Recent advances in scaling up water flows on root system networks hold promise for improving predictions of water uptake at large scales. These developments are particularly timely, as persistent difficulties in getting Earth system models to accurately represent soil-root water flows, especially under drying or heterogeneous soil moisture conditions, are now a major obstacle describing the water limitation of terrestrial fluxes.</p><p>One recently developed upscaling formalism has been shown to be both free of discretisation error in flow predictions regardless of scale and with computational cost linearly diminishing with the number of soil subdomains considered. What has been missing from this approach, however, is a proven method to apply it generally – i.e. to an arbitrary root system architecture discretised on an arbitrary grid.</p><p>The work presented here demonstrates a general algorithm that can be applied to a wide range of root system architectures (the only assumption being that only one lateral root originates at one point along a parent root) discretised on a grid consisting of a series of soil layers of variable thickness, as is common in Earth system models. It is further shown theoretically that both of these restrictions can in principle be relaxed and that this approach can in principle be extended to conditions of soil moisture heterogeneity – i.e. situations where each root segment in a soil grid cell faces a different water potential at the soil-root interface.</p><p>This work represents both a practical advance bringing broad applicability to this upscaling approach and a major theoretical advance as exact solutions for water uptake under conditions of soil moisture heterogeneity within grid cells were previously unknown. While obtaining exact solutions despite heterogeneity within the grid cell requires a way of finding the overall mean soil water potential faced by the plant, this advance nevertheless points to possible directions of future research for overcoming the major hurdle of soil moisture heterogeneity.</p>


2021 ◽  
Author(s):  
Mingguo Zheng

<p>Previous studies have suggested that runoff reduces with slope length, and the scaling trend diminishes with the degree of land degradation. This study further hypothesized that runoff is scale-independent and spatially uniform in extremely degraded landscapes. We tested the hypothesis on the Chinese Loess Plateau. Runoff data were collected from a densely rilled and gullied loess headwater with soil erosion intensity close to 20,000 t km-2 yr-1.  The data included observations from seven arable experimental plots of various lengths (20 to 164 m) and gradients (9 to 32°), as well as the headwater outlet. The results showed that the erosion-induced network of rills and gullies lowered runoff reinfiltration and resulted in exceptional high flow connectivity, thus obscuring the effects of other environmental conditions (mainly topography) and contributing to uniform runoff from the upper hillslope to the headwater outlet. The observations held at the event, annual, and mean annual time scales, implying that the investigated watershed is simply the sum of individual slopes. This study highlights the effect of erosion processes on the ensuing runoff yield. The effect should be fully addressed in studies of runoff yield in semi-arid areas, which are among the most erodible landscapes due to sparse land cover.</p>


2012 ◽  
Vol 16 (8) ◽  
pp. 2547-2565 ◽  
Author(s):  
G. Tang ◽  
P. J. Bartlein

Abstract. Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981–2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981–2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15%) with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH-modeled monthly soil moisture for the state of Illinois (US) agreed well (R2 = 0.79, p < 0.01) with observed data for the years 1984–2001. Overall, this study justifies both the feasibility of incorporating satellite-based land covers into a DGVM and the reliability of LH to simulate land-surface water balances. To better estimate surface/river runoff at mid-to-high latitudes, we recommended that LPJ-DGVM considers the effects of solar radiation on snowmelt.


Sign in / Sign up

Export Citation Format

Share Document