scholarly journals Efficient technology for processing weld surfaces in case parts

Author(s):  
Владимир Гусев ◽  
Vladimir Gusev

A well-known technology of machining weld surfaces in case parts of freight cars is analyzed. Its drawbacks are defined and eliminated by means of the development of techniques based on the use of high-capacity combined cutters. Combined cutters ensure a high-capacity machining of weld surfaces during one travel and zero back angles increase expensive hard-alloy plate life by a factor of two. Cutters are tested in the course of mentioned surface machining which confirmed their high efficiency.

2019 ◽  
Vol 2019 (12) ◽  
pp. 33-41
Author(s):  
Bori Mokrickiy ◽  
Dmitriy Savin ◽  
Yana Konyuhova ◽  
Anna Morozova

The purpose of the work – development of recommendations on correct choice support of hard-alloy plate quality according to the conditions specified of plates operation. In the work there is formed a new approach to the analysis of hard-alloy plates of a metal-cutting tool which develops an approach existing in the RSSs and conditions a necessity to develop a metrological support of plate quality for the conditions of specified working conditions. The approach is based on the simultaneous account of some plate parameters by means of the introduction of conditional quality grades. The investigation results: - the impact of the value spread of mass and dimensions of plates upon plate quality is defined, - the criteria of their division into grades depending on a spread value are defined. Conclusions: the results of plate classification according to the parameters: “plate weight”, “plate length”, Plate width” and “plate thickness differ considerably; plate weight effects most the output parameters of part work-piece machining process, plate thickness impact is the smallest; home plate quality is not so acceptable for the billet high-performance machining of precision parts; the adaptation of acting RSSs to plates taking into account the requirements for modern NC machines; under current conditions a technologist of an engineering enterprise-consumer of plates is unable to order meaningfully their essential number because of the domination of low-quality plates.


Author(s):  
L. S. Pioro ◽  
I. L. Pioro

It is well known that high-level radioactive wastes (HLRAW) are usually vitrified inside electric furnaces. Disadvantages of electric furnaces are their low melting capacity and restrictions on charge preparation. Therefore, a new concept for a high efficiency combined aggregate – submerged combustion melter (SCM)–electric furnace was developed for vitrification of HLRAW. The main idea of this concept is to use the SCM as the primary high-capacity melting unit with direct melt drainage into an electric furnace. The SCM employs a single-stage method for vitrification of HLRAW. The method includes concentration (evaporation), calcination, and vitrification of HLRAW in a single-stage process inside a melting chamber of the SCM. Specific to the melting process is the use of a gas-air or gas-oxygen-air mixture with direct combustion inside a melt. Located inside the melt are high-temperature zones with increased reactivity of the gas phase, the existence of a developed interface surface, and intensive mixing, leading to intensification of the charge melting and vitrification process. The electric furnace clarifies molten glass, thus preparing the high-quality melt for subsequent melt pouring into containers for final storage.


2018 ◽  
Vol 57 (51) ◽  
pp. 16672-16677 ◽  
Author(s):  
Konstantin Khivantsev ◽  
Nicholas R. Jaegers ◽  
Libor Kovarik ◽  
Jonathan C. Hanson ◽  
Franklin (Feng) Tao ◽  
...  

1991 ◽  
Vol 63 (11) ◽  
pp. 1182-1184 ◽  
Author(s):  
Carl A. M. Brenninkmeijer

2012 ◽  
Vol 197 ◽  
pp. 441-447
Author(s):  
Nan Li ◽  
Bo Jiang ◽  
Jing Yong Liu ◽  
Wei Zhang ◽  
Xing Xing Chen

The traditional cable television broadcasting, digital mobile television broadcasting and the direct satellite video broadcasting ensure the television services of people’s daily life. Owing to digital broadcast satellite, also known as the digital video broadcasting (DVB) protocol applying terminal, direct-to-home television services with an outdoor dish of one meter come true. In order to accommodate the requirements of various broadcasting services, the DVB-S.2 protocol provides more efficient technology details. The LDPC codes concatenated with BCH codes achieve high performance near the Shannon limit and have low encoding and decoding complexity. Some high efficiency modulation methods are introduced into theDVB-S.2, such as QPSK, 8PSK, 16APSK and 32APSK. The adaptive coding and modulation (ACM) according the channel performance (E s /N 0 ) is applied in the DVB-S.2 technology. In order to preventing the burst disturbance, satellite broadcasting via variable frequency band is presented in this paper to ensure the quality of services. The DVB-S.2 via variable frequency is simulated based on Matlab/Simulink in this paper, and the simulation implements the video streams coding and modulation, ACM and frequency change with the channel performance.


Author(s):  
Alan Hashem ◽  
Dani Fadda ◽  
Kenneth J. Fewel

An advanced three stage filtration/separation air intake system (Compact II) is introduced in this paper. The system was developed to meet the current and expected future market demands for gas turbine combustion air treatment in a marine environment. Developing and testing of the Compact II are subjects of this paper.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2267
Author(s):  
Haisheng Han ◽  
Tong Wang ◽  
Yongguang Zhang ◽  
Arailym Nurpeissova ◽  
Zhumabay Bakenov

A three-dimensionally ordered macroporous ZnO (3DOM ZnO) framework was synthesized by a template method to serve as a sulfur host for lithium–sulfur batteries. The unique 3DOM structure along with an increased active surface area promotes faster and better electrolyte penetration accelerating ion/mass transfer. Moreover, ZnO as a polar metal oxide has a strong adsorption capacity for polysulfides, which makes the 3DOM ZnO framework an ideal immobilization agent and catalyst to inhibit the polysulfides shuttle effect and promote the redox reactions kinetics. As a result of the stated advantages, the S/3DOM ZnO composite delivered a high initial capacity of 1110 mAh g−1 and maintained a capacity of 991 mAh g−1 after 100 cycles at 0.2 C as a cathode in a lithium–sulfur battery. Even at a high C-rate of 3 C, the S/3DOM ZnO composite still provided a high capacity of 651 mAh g−1, as well as a high areal capacity (4.47 mAh cm−2) under high loading (5 mg cm−2).


2015 ◽  
Vol 1094 ◽  
pp. 348-351
Author(s):  
Er Hong Zhang ◽  
Hua Long Zhang

This paper studies on technology of slow tool servo method and the processing of high efficiency. High precision surface NRS goal is studied for factors affecting theNRSworkability and surface machining accuracy. Including slow tool servo theory, research tools, tool path generation, surface microstructure simulation, slow tool servoNRSsurface machining and simulation systems development, installation errors and adjustment tool,Yto linear turret design,NRSsurface machining experiments.


Author(s):  
Fakhriy Hario P ◽  
Adhi Susanto ◽  
I Wayan Mustika ◽  
Sevia M Idrus ◽  
Sholeh Hadi P

Nonlinearity is one major problem broadband communication faced on utilizing the high capacity of optical fibers. That is due to scattering  phenomenon, which results in the deviations of wavelengths and energies. The dithering method is applied in the attempt to reduce those scatterings. In this paper, we propose the performance of a dithering technique based new system OFDM-RoF using two modulator scheme and coherent detection to alleviate the characteristics nonlinearity applied on the system. The dithering technique inputs signal externally to the signal processing systems to eliminate the effects of nonlinearity. Here, we report the performance of a dithering technique based on the OFDM-RoF, the results our experiment showed that the applied dithering with 16 QAM modulation can make the system more reliable and increases  the power level 1.55% with 193.1 THz, 2% with  100 THz and 1.99% ~ 200 THz, the best condition are with f<sub>d</sub> &lt; f<sub>c</sub>. However, all condition close proximity in the parameters OLP (optical launch power), BER and SER measurement. The result demonstrated a high efficiency and good power in which the OLP operated 6.396 dBm / 4.361 E-3 W~fd 200 THz, 3.578 dBm / 2.279 E-3 W~fd 193.1 THz and 6.420 dBm / 4.3384 E-3 W~100 THz. The best BER value is achieved at 0.33 and SER 0.78 at 5 km~f<sub>d</sub> 100 THz, 0.33 and 0.768 for 10 km~fd 193.1 THz, 0.478 and 0.92 for 50 km~fd 193.1 THz.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1444 ◽  
Author(s):  
Jae Han ◽  
Kwi-Il Park ◽  
Chang Jeong

Improvement of energy harvesting performance from flexible thin film-based energy harvesters is essential to accomplish future self-powered electronics and sensor systems. In particular, the integration of harvesting signals should be established as a single device configuration without complicated device connections or expensive methodologies. In this research, we study the dual-film structures of the flexible PZT film energy harvester experimentally and theoretically to propose an effective principle for integrating energy harvesting signals. Laser lift-off (LLO) processes are used for fabrication because this is known as the most efficient technology for flexible high-performance energy harvesters. We develop two different device structures using the multistep LLO: a stacked structure and a double-faced (bimorph) structure. Although both structures are well demonstrated without serious material degradation, the stacked structure is not efficient for energy harvesting due to the ineffectively applied strain to the piezoelectric film in bending. This phenomenon stems from differences in position of mechanical neutral planes, which is investigated by finite element analysis and calculation. Finally, effectively integrated performance is achieved by a bimorph dual-film-structured flexible energy harvester. Our study will foster the development of various structures in flexible energy harvesters towards self-powered sensor applications with high efficiency.


Sign in / Sign up

Export Citation Format

Share Document