Calculation of the Depth Dependence of Relative Biological Effectiveness For Clinical Proton Beams

Author(s):  
А. Белоусов ◽  
A. Belousov ◽  
Р. Бахтиозин ◽  
R. Bahtiosin ◽  
М. Колыва­нова ◽  
...  

Purpose: Accurate establishing the value of relative biological effectiveness (RBE) for high energy protons is one of the main challenges of modern radiotherapy. The purpose of the study is to calculate the depth dependence of RBE for proton beams forming a spread-out Bragg peak. Material and methods: Spatial distributions of absorbed dose and dose-average linear energy transfer (LET) for 50-100 MeV (0.5 MeV energy step) monochromatic proton beams were obtained by Monte-Carlo computer simulation using Geant4 software. A linear dependence of RBE on the dose-average LET was used. Absorbed dose distributions were obtained in a water phantom for monochromatic pencil proton beams of 2.5 mm radius. The absorbed dose and the dose-average LET values were calculated in voxels with dimensions of 2×2×0.2 mm. Results: Calculations of depth dependencies of absorbed dose and dose-average LET for 50–100 MeV monochromatic proton beams were performed. Depth dependencies of RBE for these beams were established. The weighing coefficients values allowing to generate uniformspread-out Bragg peak (SOBP) were determined. Depth distribution of “RBE-weighted” dose and RBE values for SOBP were found. Conclusion: The impact of the initial beam energy step on the degree of homogeneity of the modified Bragg curve was investigated. It was shown that a step up to 1.5 MeV is acceptable for generate a smooth Bragg curve. The depth dependence of the average RBE value is a complex function, which rapidly changes especially at the far end of the SOBP. RBE may vary up to 10-30 % compared to current clinical value. The linear model of RBE-LET dependence shown in the study can be easily used in dosimetric planning systems, that may will significantly improve the quality of proton radiotherapy.

2019 ◽  
Vol 186 (2-3) ◽  
pp. 172-175 ◽  
Author(s):  
Werner Friedland ◽  
Pavel Kundrát ◽  
Janine Becker ◽  
Markus Eidemüller

ABSTRACT The biophysical simulation tool PARTRAC has been primarily developed to model radiation physics, chemistry and biology on nanometre to micrometre scales. However, the tool can be applied in simulating radiation effects in an event-by-event manner over macroscopic volumes as well. Benchmark simulations are reported showing that PARTRAC does reproduce the macroscopic Bragg peaks of proton beams, although the penetration depths are underestimated by a few per cent for high-energy beams. PARTRAC also quantifies the increase in DNA damage and its complexity along the beam penetration depth. Enhanced biological effectiveness is predicted in particular within distal Bragg peak parts of therapeutic proton beams.


2021 ◽  
Vol 8 ◽  
Author(s):  
Giuseppe Battistoni ◽  
Marco Toppi ◽  
Vincenzo Patera ◽  
The FOOT Collaboration

In Charged Particle Therapy (PT) proton or 12C beams are used to treat deep-seated solid tumors exploiting the advantageous characteristics of charged particles energy deposition in matter. For such projectiles, the maximum of the dose is released at the end of the beam range, in the Bragg peak region, where the tumour is located. However, the nuclear interactions of the beam nuclei with the patient tissues can induce the fragmentation of projectiles and/or target nuclei and needs to be carefully taken into account when planning the treatment. In proton treatments, the target fragmentation produces low energy, short range fragments along all the beam path, that deposit a non-negligible dose especially in the first crossed tissues. On the other hand, in treatments performed using 12C, or other (4He or 16O) ions of interest, the main concern is related to the production of long range fragments that can release their dose in the healthy tissues beyond the Bragg peak. Understanding nuclear fragmentation processes is of interest also for radiation protection in human space flight applications, in view of deep space missions. In particular 4He and high-energy charged particles, mainly 12C, 16O, 28Si and 56Fe, provide the main source of absorbed dose in astronauts outside the atmosphere. The nuclear fragmentation properties of the materials used to build the spacecrafts need to be known with high accuracy in order to optimise the shielding against the space radiation. The study of the impact of these processes, which is of interest both for PT and space radioprotection applications, suffers at present from the limited experimental precision achieved on the relevant nuclear cross sections that compromise the reliability of the available computational models. The FOOT (FragmentatiOn Of Target) collaboration, composed of researchers from France, Germany, Italy and Japan, designed an experiment to study these nuclear processes and measure the corresponding fragmentation cross sections. In this work we discuss the physics motivations of FOOT, describing in detail the present detector design and the expected performances, coming from the optimization studies based on accurate FLUKA MC simulations and preliminary beam test results. The measurements planned will be also presented.


2020 ◽  
Vol 47 (8) ◽  
pp. 3691-3702 ◽  
Author(s):  
Elisabeth Mara ◽  
Monika Clausen ◽  
Suphalak Khachonkham ◽  
Simon Deycmar ◽  
Clara Pessy ◽  
...  

2019 ◽  
Vol 46 (3) ◽  
pp. e53-e78 ◽  
Author(s):  
Harald Paganetti ◽  
Eleanor Blakely ◽  
Alejandro Carabe-Fernandez ◽  
David J. Carlson ◽  
Indra J. Das ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 306 ◽  
Author(s):  
Adrian Barylski ◽  
Krzysztof Aniołek ◽  
Andrzej S. Swinarew ◽  
Sławomir Kaptacz ◽  
Jadwiga Gabor ◽  
...  

This study analyzed the effects of irradiation of polytetrafluoroethylene (PTFE) containing 40% of bronze using an electron beam with energy of 10 MeV. Dosages from 26 to156 kGy (2.6–15.6 Mrad) were used. The impact of a high-energy electron beam on the thermal, spectrophotometric, mechanical, and tribological properties was determined, and the results were compared with those obtained for pure PTFE. Thermal properties studies showed that such irradiation caused changes in melting temperature Tm and crystallization temperature Tc, an increase in crystallization heat ∆Hc, and a large increase in crystallinity χc proportional to the absorbed dose for both polymers. The addition of bronze decreased the degree of crystallinity of PTFE by twofold. Infrared spectroscopy (FTIR) studies confirmed that the main phenomenon associated with electron beam irradiation was the photodegradation of the polymer chains for both PTFE containing bronze and pure PTFE. This had a direct effect on the increase in the degree of crystallinity observed in DSC studies. The use of a bronze additive could lead to energy dissipation over the additive particles. An increase in hardness H and Young’s modulus E was also observed. The addition of bronze and the irradiation with an electron beam improved of the operational properties of PTFE.


2018 ◽  
Vol 63 (2) ◽  
pp. 62-64 ◽  
Author(s):  
А. Белоусов ◽  
A. Belousov ◽  
Г. Крусанов ◽  
G. Krusanov ◽  
А. Черняев ◽  
...  

Purpose: Determining the absorbed dose produced by photons, it is often assumed that it is equal to the radiation kerma. This assumption is valid only in the presence of an electronic equilibrium, which in turn is never ensured in practice. It leads to some uncertainty in determining the absorbed dose in the irradiated sample during radiobiological experiments. Therefore, it is necessary to estimate the uncertainty in determining the relative biological effectiveness of X-rays associated with uncertainty in the determination of the absorbed dose. Material and methods: The monochromatic X-ray photon emission is simulated through a standard 25 cm2 plastic flask containing 5 ml of the model culture medium (biological tissue with elemental composition C5H40O18N). The calculation of the absorbed dose in a culture medium is carried out in two ways: 1) the standard method, according to which the ratio of the absorbed dose in the medium and the ionization chamber is equal to the ratio of kerma in the medium and air; 2) determination of the absorbed dose in the medium and in the sensitive volume of the ionization chamber by computer simulation and calculating the ratio of these doses. For each primary photon energies, 108 histories are modeled, which makes it possible to achieve a statistical uncertainty not worse than 0.1 %. The energy step was 1 keV. The spectral distribution of X-ray energy is modeled separately for each set of anode materials, thickness and materials of the primary and secondary filters. The specification of the X-ray beams modeled in this work corresponds to the standards ISO 4037 and IEC 61267. Within the linear-quadratic model, the uncertainty of determining the RBEmax values is directly proportional to the uncertainty in the determination of the dose absorbed by the sample under study. Results: At energy of more than 60 keV, the ratios for water and biological tissue practically do not differ. At lower energies, up to about 20 keV, the ratio of the coefficients of air and water is slightly less than that of air and biological tissue. The maximum difference is ~ 1 % than usual and the equality of absorbed doses in the ionization chamber and sample is justified. At photon energy of 60 keV for the geometry in question, the uncertainty in determining the dose is about 50 %. For non-monochromatic radiation, the magnitude of the uncertainty is determined by the spectral composition of the radiation, since the curves vary greatly in the energy range 10–100 keV. It is shown that, depending on the spectral composition of X-ray radiation, uncertainty in the determination of the absorbed dose can reach 40–60 %. Such large uncertainty is due to the lack of electronic equilibrium in the radiation geometry used in practice. The spread of RBE values determined from the data of radiobiological experiments carried out by different authors can be determined both by differences in the experimental conditions and by uncertainty in the determination of the absorbed dose. Using Fricke dosimeters instead of ionization chambers in the same geometry allows you to reduce the uncertainty approximately 2 times, up to 10–30 %. Conclusion: The computer simulation of radiobiological experiments to determine the relative biological effectiveness of X-ray radiation is performed. The geometry of the experiments corresponds to the conditions for the use of standard bottles placed in the side holders. It is shown that the ratio of absorbed doses and kerma in the layers of biological tissue and air differ among themselves with an uncertainty up to 60 %. Depending on the quality of the beam, the true absorbed dose may differ from the one calculated on the assumption of kerma and dose equivalence by 50 %. Uncertainty in determining the RBE in these experiments is of the same order. The results are presented for X-ray beams with negligible fraction of photons with energies less than 10 keV. For beams of a different quality, the uncertainty in determination can significantly increase. For the correct evaluation of RBE, it is necessary to develop a uniform standard for carrying out radiobiological experiments. This standard should regulate both the geometry of the experiments and the conduct of dosimetric measurements.


Sign in / Sign up

Export Citation Format

Share Document