scholarly journals Hedging the Drift: Learning to Optimize Under Nonstationarity

2021 ◽  
Author(s):  
Wang Chi Cheung ◽  
David Simchi-Levi ◽  
Ruihao Zhu

We introduce data-driven decision-making algorithms that achieve state-of-the-art dynamic regret bounds for a collection of nonstationary stochastic bandit settings. These settings capture applications such as advertisement allocation, dynamic pricing, and traffic network routing in changing environments. We show how the difficulty posed by the (unknown a priori and possibly adversarial) nonstationarity can be overcome by an unconventional marriage between stochastic and adversarial bandit learning algorithms. Beginning with the linear bandit setting, we design and analyze a sliding window-upper confidence bound algorithm that achieves the optimal dynamic regret bound when the underlying variation budget is known. This budget quantifies the total amount of temporal variation of the latent environments. Boosted by the novel bandit-over-bandit framework that adapts to the latent changes, our algorithm can further enjoy nearly optimal dynamic regret bounds in a (surprisingly) parameter-free manner. We extend our results to other related bandit problems, namely the multiarmed bandit, generalized linear bandit, and combinatorial semibandit settings, which model a variety of operations research applications. In addition to the classical exploration-exploitation trade-off, our algorithms leverage the power of the “forgetting principle” in the learning processes, which is vital in changing environments. Extensive numerical experiments with synthetic datasets and a dataset of an online auto-loan company during the severe acute respiratory syndrome (SARS) epidemic period demonstrate that our proposed algorithms achieve superior performance compared with existing algorithms. This paper was accepted by George J. Shanthikumar for the Management Science Special Issue on Data-Driven Prescriptive Analytics.

Author(s):  
Laure Fournier ◽  
Lena Costaridou ◽  
Luc Bidaut ◽  
Nicolas Michoux ◽  
Frederic E. Lecouvet ◽  
...  

Abstract Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. Key Points • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.


Author(s):  
Hossein Taherian ◽  
Mohammad Reza Aghaebrahimi ◽  
Luis Baringo ◽  
Saeid Reza Goldani

2018 ◽  
Vol 46 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Bertrand Crettez ◽  
Naila Hayek ◽  
Georges Zaccour

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 99 ◽  
Author(s):  
Yueqi Gu ◽  
Orhun Aydin ◽  
Jacqueline Sosa

Post-earthquake relief zone planning is a multidisciplinary optimization problem, which required delineating zones that seek to minimize the loss of life and property. In this study, we offer an end-to-end workflow to define relief zone suitability and equitable relief service zones for Los Angeles (LA) County. In particular, we address the impact of a tsunami in the study due to LA’s high spatial complexities in terms of clustering of population along the coastline, and a complicated inland fault system. We design data-driven earthquake relief zones with a wide variety of inputs, including geological features, population, and public safety. Data-driven zones were generated by solving the p-median problem with the Teitz–Bart algorithm without any a priori knowledge of optimal relief zones. We define the metrics to determine the optimal number of relief zones as a part of the proposed workflow. Finally, we measure the impacts of a tsunami in LA County by comparing data-driven relief zone maps for a case with a tsunami and a case without a tsunami. Our results show that the impact of the tsunami on the relief zones can extend up to 160 km inland from the study area.


2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Omar Nassef ◽  
Toktam Mahmoodi ◽  
Foivos Michelinakis ◽  
Kashif Mahmood ◽  
Ahmed Elmokashfi

This paper presents a data driven framework for performance optimisation of Narrow-Band IoT user equipment. The proposed framework is an edge micro-service that suggests one-time configurations to user equipment communicating with a base station. Suggested configurations are delivered from a Configuration Advocate, to improve energy consumption, delay, throughput or a combination of those metrics, depending on the user-end device and the application. Reinforcement learning utilising gradient descent and genetic algorithm is adopted synchronously with machine and deep learning algorithms to predict the environmental states and suggest an optimal configuration. The results highlight the adaptability of the Deep Neural Network in the prediction of intermediary environmental states, additionally the results present superior performance of the genetic reinforcement learning algorithm regarding its performance optimisation.


1993 ◽  
Vol 02 (01) ◽  
pp. 47-70
Author(s):  
SHARON M. TUTTLE ◽  
CHRISTOPH F. EICK

Forward-chaining rule-based programs, being data-driven, can function in changing environments in which backward-chaining rule-based programs would have problems. But, degugging forward-chaining programs can be tedious; to debug a forward-chaining rule-based program, certain ‘historical’ information about the program run is needed. Programmers should be able to directly request such information, instead of having to rerun the program one step at a time or search a trace of run details. As a first step in designing an explanation system for answering such questions, this paper discusses how a forward-chaining program run’s ‘historical’ details can be stored in its Rete inference network, used to match rule conditions to working memory. This can be done without seriously affecting the network’s run-time performance. We call this generalization of the Rete network a historical Rete network. Various algorithms for maintaining this network are discussed, along with how it can be used during debugging, and a debugging tool, MIRO, that incorporates these techniques is also discussed.


2021 ◽  
Author(s):  
Geza Halasz ◽  
Michela Sperti ◽  
Matteo Villani ◽  
Umberto Michelucci ◽  
Piergiuseppe Agostoni ◽  
...  

BACKGROUND Several models have been developed to predict mortality in patients with Covid-19 pneumonia, but only few have demonstrated enough discriminatory capacity. Machine-learning algorithms represent a novel approach for data-driven prediction of clinical outcomes with advantages over statistical modelling. OBJECTIVE To developed the Piacenza score, a Machine-learning based score, to predict 30-day mortality in patients with Covid-19 pneumonia METHODS The study comprised 852 patients with COVID-19 pneumonia, admitted to the Guglielmo da Saliceto Hospital (Italy) from February to November 2020. The patients’ medical history, demographic and clinical data were collected in an electronic health records. The overall patient dataset was randomly splitted into derivation and test cohort. The score was obtained through the Naïve Bayes classifier and externally validated on 86 patients admitted to Centro Cardiologico Monzino (Italy) in February 2020. Using a forward-search algorithm six features were identified: age; mean corpuscular haemoglobin concentration; PaO2/FiO2 ratio; temperature; previous stroke; gender. The Brier index was used to evaluate the ability of ML to stratify and predict observed outcomes. A user-friendly web site available at (https://covid.7hc.tech.) was designed and developed to enable a fast and easy use of the tool by the final user (i.e., the physician). Regarding the customization properties to the Piacenza score, we added a personalized version of the algorithm inside the website, which enables an optimized computation of the mortality risk score for a single patient, when some variables used by the Piacenza score are not available. In this case, the Naïve Bayes classifier is re-trained over the same derivation cohort but using a different set of patient’s characteristics. We also compared the Piacenza score with the 4C score and with a Naïve Bayes algorithm with 14 features chosen a-priori. RESULTS The Piacenza score showed an AUC of 0.78(95% CI 0.74-0.84 Brier-score 0.19) in the internal validation cohort and 0.79(95% CI 0.68-0.89, Brier-score 0.16) in the external validation cohort showing a comparable accuracy respect to the 4C score and to the Naïve Bayes model with a-priori chosen features, which achieved an AUC of 0.78(95% CI 0.73-0.83, Brier-score 0.26) and 0.80(95% CI 0.75-0.86, Brier-score 0.17) respectively. CONCLUSIONS A personalized Machine-learning based score with a purely data driven features selection is feasible and effective to predict mortality in patients with COVID-19 pneumonia.


2019 ◽  
Vol 29 ◽  
Author(s):  
S. de Vos ◽  
S. Patten ◽  
E. C. Wit ◽  
E. H. Bos ◽  
K. J. Wardenaar ◽  
...  

Abstract Aims The mechanisms underlying both depressive and anxiety disorders remain poorly understood. One of the reasons for this is the lack of a valid, evidence-based system to classify persons into specific subtypes based on their depressive and/or anxiety symptomatology. In order to do this without a priori assumptions, non-parametric statistical methods seem the optimal choice. Moreover, to define subtypes according to their symptom profiles and inter-relations between symptoms, network models may be very useful. This study aimed to evaluate the potential usefulness of this approach. Methods A large community sample from the Canadian general population (N = 254 443) was divided into data-driven clusters using non-parametric k-means clustering. Participants were clustered according to their (co)variation around the grand mean on each item of the Kessler Psychological Distress Scale (K10). Next, to evaluate cluster differences, semi-parametric network models were fitted in each cluster and node centrality indices and network density measures were compared. Results A five-cluster model was obtained from the cluster analyses. Network density varied across clusters, and was highest for the cluster of people with the lowest K10 severity ratings. In three cluster networks, depressive symptoms (e.g. feeling depressed, restless, hopeless) had the highest centrality. In the remaining two clusters, symptom networks were characterised by a higher prominence of somatic symptoms (e.g. restlessness, nervousness). Conclusion Finding data-driven subtypes based on psychological distress using non-parametric methods can be a fruitful approach, yielding clusters of persons that differ in illness severity as well as in the structure and strengths of inter-symptom relationships.


Sign in / Sign up

Export Citation Format

Share Document