scholarly journals Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle

2016 ◽  
Vol 78 (10) ◽  
pp. 1595-1600 ◽  
Author(s):  
Hiroko GOTO ◽  
Abdul Qadir QADIS ◽  
Yo-Han KIM ◽  
Kentaro IKUTA ◽  
Toshihiro ICHIJO ◽  
...  
2021 ◽  
Vol 26 (4) ◽  
pp. 2788-2792
Author(s):  
VASILE BOGHIAN

The ruminal acidosis is a decrease in the ruminal pH by the accumulation of acidic metabolites at this level. As a result, the proportion of ruminal volatile fatty acids and glycaemia changes with immediate repercussions on the milk production. Of the total ruminant-reticular indigestions diagnosed in a lot of 370 cows, 37.9% were represented by ruminal acidosis. Out of these, most of the cases (90.9%) had a subacute evolution, which implies difficulties of diagnosis under farm conditions. On the other hand, the amount of milk was, on average, smaller with 1.7 liters in cows with ruminal acidosis compared to the clinically healthy cows. Milk fat decreased from 3.8% to 2.8% in sick cows, by an average of 1% and had a coefficient of variation of individual values almost double compared to the values obtained in clinically healthy cows. This shows the direct implication of ruminal acidosis over milk production. Appart of ruminal paresis and indigestion, milk production’s impairment is an important clinical sign in most of the dairy cows with ruminal acidosis.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Natalia Sato Minami ◽  
Rejane Santos Sousa ◽  
Francisco Leonardo Costa Oliveira ◽  
Mailson Rennan Borges Dias ◽  
Débora Aparecida Cassiano ◽  
...  

We evaluated the clinical aspects and feeding behavior of cattle with subacute ruminal acidosis (SARA) caused by short-chain fatty acids (SCFAs). Ten healthy Nelore heifers were subjected to an adjusted SARA induction protocol using citrus pulp (CP). Clinical examinations were performed at baseline and at 3, 6, 9, 12, 15, 18, and 24 h intervals after induction, with ruminal fluid, blood, and feces sampling. The animals’ feeding behavior was evaluated on, before, and for 3 days after SARA by observing the animals every 5 min for 24 h. The dry matter intake (DMI) was recorded daily. The ruminal pH during SARA was always lower than baseline, with an acidotic duration of 547 ± 215 min, a minimum pH of 5.38 ± 0.16, and an average pH of 5.62 ± 0.1. SARA was mainly caused by SCFAs (maximum 118.4 ± 9.3 mmol/L), with the production of l-lactic acids (7.17 mmol/L) and d-lactic acids (0.56 mmol/L) 6 h after the experiment began. The DMI was reduced by 66% and 48% on days 1 and 2, respectively, and returned to normal levels on day 3. SARA caused a reduction in feed intake and rumination time, as well as an increase in the time spent in decubitus on days 1 and 2. These results were influenced by the ruminal pH, ruminal movement, and osmolarity. Furthermore, SARA caused different degrees of depression, which became more pronounced with higher ruminal lactic acid concentrations.


2018 ◽  
Vol 39 (6) ◽  
pp. 2621
Author(s):  
Ludmila Couto Gomes ◽  
Claudete Regina Alcalde ◽  
Julio Cesar Damasceno ◽  
Luiz Paulo Rigolon ◽  
Ana Paula Silva Possamai ◽  
...  

Feeding goats with calcium salts of fatty acids (CSFA) can supply ruminants with lipids, with minimal effects on ruminal fermentation and fiber digestibility. However, there is a shortage of information on the effect of CSFA on characteristics of rumen fermentation in grassland goats. Thus, the present study aimed to assess the addition of CSFA to concentrate on the parameters of rumen fermentation of grazing goats. Five rumen cannulated goats were distributed in a Latin square 5x5 design (treatments: 0%, 1.5%, 3.0%, 4.5% and 6.0% CSFA. The pH, ammonia N and volatile fatty acids (VFA) content were analyzed in the ruminal fluid at 0, 2, 4, 6 and 8 hours after concentrate supplementation. The pH and ammonia N concentration showed a linear effect with the addition of CSFA. There was no effect observed for the VFA molar concentration after grazing goats were fed with the experimental diet. In conclusion, further research is needed to investigate the addition of CSFA to goat diets because there is evidence that CSFA increases ruminal pH and decreases excess ruminal ammonia without changing the VFA concentration in the rumen fluid.


2020 ◽  
Vol 65 (No. 8) ◽  
pp. 336-345 ◽  
Author(s):  
K Kara

The present study was aimed at comparing the milk urea nitrogen (MUN) and milk fatty acid (MFA) compositions in Holstein cows with subacute ruminal acidosis (SARA) to those values of Holstein cows that did not have SARA. Also, the correlations among rumen pH value and the compositions of MUN and MFA in milk were determined. Dairy cows (n = 16) with subacute ruminal acidosis (SARA) (pH value 5.60 ± 0.02) and control dairy cows (n = 16) (control) (pH value 6.20 ± 0.04) were studied. The MUN concentrations (578 µg/l) of the dairy cows with SARA was lower than those (1 315 µg/l) of the control dairy cows (P < 0.001). In the milk of the dairy cows with SARA, the unsaturated fatty acids (UFA), thrombogenic index (TI), and hypocholesterolemic fatty acid index (hcFA) decreased; but the saturated fatty acids (SFA), atherogenic (AI) and hypercholesterolemic fatty acid (HcFA) indexes (P < 0.01) increased. The rumen pH value and the concentration of the MUN were positively correlated with the proportions of the monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), omega-3 fatty acids (n-3), omega-6 fatty acids (n-6), omega-9 fatty acids (n-9), long-chain fatty acids (LCFA) and very-long-chain fatty acids (VLCFA) and the n-3/n-6 ratio of the milk samples (P < 0.05). Consequently, the dairy cow with SARA that are in early-lactation can affect the carbohydrate fermentation, fatty acid hydrogenation and protein degradation. The MUN concentration in the dairy cows with SARA seriously decreased. The SARA changes the milk fatty acid composition and decreases the MUFA, PUFA, n-3, oleic acid and hypocholesterolemic fatty acids and the hypocholesterolemic/hypercholesterolemic ratio (h/H) values of milk. Therefore, the nutritional and functional quality for human nutrition decreases in the milk of dairy cows with SARA.


2020 ◽  
Vol 51 (1) ◽  
pp. 5-17
Author(s):  
Levente Kovács ◽  
Otto Szenci ◽  
Walter Baumgartner ◽  
Mátyás Hejel ◽  
László Rózsa

According to the latest studies, the prevalence of subacute ruminal acidosis (SARA) is around 20% in early and mid- lactation dairy cows, generating annual losses in the United States of approximately USD 500 million to 1 billion. The diagnosis of SARA is still difficult due to lack of pathognomonic clues and the delayed appearance of certain clinical signs. Therefore, SARA remains neglected or even unrecognized in many dairy herds. SARA is characterized by daily episodes of low ruminal pH, when the pH remains in the range of 5.2 to 6 for a prolonged period due to the accumulation of short-chain fatty acids and insufficient rumen buffering. The causes of SARA are related to high-grain diets, such as feeding excessive amounts of non-structural carbohydrates and highly fermentable forages, and insufficient dietary coarse fibre. SARA is associated with the inflammation of several organs and tissues in dairy cows, and its main long-term health and economic consequences are the fluctuation of feed intake, reduced fibre digestion, depression of milk yield and milk fat content, gastrointestinal damage, diarrhoea, laminitis, liver abscesses, and lameness. The aim of this review is to summarize the information available on the physiological aspects, risk factors, prevalence and possible indicators of SARA in dairy cattle. Basedon the existing literature, rumenocentesis and the use of an oral stomach tube are reliable field techniques to detect SARA. Nowadays, improved field techniques allowing the continuous measurement of reticuloruminal pH are also available for better diagnosis of SARA. Wireless indwelling pH probes may become important tools for the continuous measurement of ruminal pH in the coming years.


2019 ◽  
Vol 59 (9) ◽  
pp. 1674 ◽  
Author(s):  
Metha Wanapat ◽  
Thiwakorn Ampapon ◽  
Kampanat Phesatcha ◽  
Sungchhang Kang

Replacement of chemical compounds by dietary sources as rumen enhancers have been of great interest and concern by researchers. Four, rumen-fistulated swamp buffalo bulls with average liveweight of 365 ± 15.0 kg were randomly assigned to treatments, to investigate the impact of banana flower powder (BAFLOP) as a rumen modifier on pH, rumen fermentation, nutrient digestibility, microbial protein synthesis and volatile fatty acids. All buffaloes were allotted according to a 4 × 4 Latin square design. Dietary supplementation treatments were as follows: 2 g concentrate/kg bodyweight (BW; T1), 15 g concentrate/kg BW (T2), 15 g concentrate/kg BW plus BAFLOP 300 g/head.day (T3) and 15 g concentrate/kg BW plus BAFLOP 600 g/head.day (T4). Untreated rice straw was fed ad libitum. The findings showed that total feed intake was increased in buffaloes fed a diet supplemented with concentrate at 2 g/kg BW, while rice straw intake was reduced. Nutrient digestibility was increased by BAFLOP supplementation at both levels (T3 and T4; P < 0.05). Ruminal pH dropped (5.9) in buffaloes fed with concentrate at 15 g/kg BW, while buffaloes with BAFLOP supplementation could maintain ruminal pH when fed with high-concentrate diet. Ruminal ammonia-nitrogen increased in the buffaloes fed concentrate at 15 g/kg BW, especially with BAFLOP supplementation. Feeding high-concentrate diet increased the concentrations of ruminal total volatile fatty acids and propionic acid (C3), while the concentration of acetic acid and the acetic acid:C3 ratio and methane production were subsequently reduced (P < 0.05). In addition, efficiency of microbial protein synthesis was increased by the BAFLOP feeding (P < 0.05). In the present study, using BAFLOP as a dietary rumen enhancer at 300–600 g/head.day resulted in an increased rumen pH, C3 concentration, nutrient digestibility and microbial protein synthesis, while mitigating ruminal methane production. Higher nutrient digestibility and lower ruminal methane production, more dietary energy and production efficiency are expected.


2016 ◽  
Vol 155 (3) ◽  
pp. 508-518 ◽  
Author(s):  
A. E. KHOLIF ◽  
T. A. MORSY ◽  
O. H. MATLOUP ◽  
U. Y. ANELE ◽  
A. G. MOHAMED ◽  
...  

SUMMARYFifteen lactating Damascus goats (44 ± 0·8 kg body weight) were used in a completely randomized design to evaluate the supplementation ofChlorella vulgarismicroalgae at 0 (Control), 5 (Alg05) and 10 g/goat/day (Alg10) for 12 weeks.Chlorella vulgaristreatments increased feed intake and apparent diet digestibility compared with a control diet. No differences were noted in the ruminal pH and ammonia-N concentrations, but increased concentration of total volatile fatty acids and propionic acid were observed in goats fed with Alg05 and Alg10. Diets of Alg05 and Alg10 increased serum glucose concentration but decreased glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase and cholesterol concentrations. Additionally,C. vulgarissupplementation moderately increased milk yield, energy corrected milk, total solids, solids not fat and lactose. Feeding Alg05 and Alg10 diets increased milk unsaturated fatty acids with concomitant increases in total conjugated linoleic acid concentrations. It is concluded that the daily inclusion of 5 or 10 g ofC. vulgarisin the diets of Damascus goats increased milk yield and positively modified milk fatty acid profile.


Sign in / Sign up

Export Citation Format

Share Document