scholarly journals RESULTS OF A PHENOMENA IDENTIFICATION AND RANKING TABLE (PIRT) EXERCISE FOR A SEVERE ACCIDENT IN A SMALL MODULAR HIGH-TEMPERATURE GAS-COOLED REACTOR

2019 ◽  
Vol 8 (2) ◽  
pp. 159-169
Author(s):  
David William Hummel ◽  
Yu-Shan Chin ◽  
Andrew Prudil ◽  
Anthony Williams ◽  
Eugene Masala ◽  
...  

Canada has attracted specific interest from developers of nonwater-cooled small modular reactor (SMR) technologies, including concepts based on high-temperature gas-cooled reactors (HTGRs). It is anticipated that some research and development (R&D) will be necessary to support safety analysis and licensing of these reactors in Canada. The Phenomena Identification and Ranking Table (PIRT) process is a formalized method in which a panel of experts identifies which physical phenomena are most relevant to the reactor safety analysis and how well understood these phenomena are. The PIRT process is thus a tool to assess current knowledge levels and (or) predictive capabilities of models, thus providing direction to a focused R&D program. This paper summarizes the results of a PIRT process performed by a panel of experts at Canadian Nuclear Laboratories for a limiting or “worst-case” accident scenario at a generic HTGR-type SMR. Suggestions are given regarding the highest priority R&D items to support severe accidents analysis of these reactors.

2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Seung Min Lee ◽  
Nelbia Da Silva Lapa ◽  
Gaianê Sabundjian

The aim of this work was to simulate a severe accident at a typical PWR, initiated with a break in Emergency Core Cooling System line of a hot leg, using the MELCOR code. The model of this typical PWR was elaborated by the Global Research for Safety and provided to the CNEN for independent analysis of the severe accidents at Angra 2, which is similar to this typical PWR. Although both of them are not identical, the results obtained of that typical PWR may be valuable because of the lack of officially published simulation of severe accident at Angra 2. Relevant parameters such as pressure, temperature and water level in various control volumes, after the break at the hot leg, were calculated as well as degree of core degradation and hydrogen production within the containment. The result obtained in this work could be considered satisfactory in the sense that the physical phenomena reproduced by the simulation were in general very reasonable, and most of the events occurred within acceptable time intervals. However, the uncertainty analysis was not carried out in this work. Furthermore, this scenario could be used as a base for the study of the effectiveness of some preventive or/and mitigating measures of Severe Accident Management by implementing each measure in this model.


Author(s):  
Fumie Sebe ◽  
Masato Yamada ◽  
Yutaka Takeuchi ◽  
Kazuo Kakiuchi ◽  
Kazunari Okonogi

Based on lessons learned from the Fukushima Daiichi nuclear power plant accident, pursuit of accident tolerant fuel (ATF) has been discussed by many institutions in the world. Toshiba identified a silicon carbide (SiC) ceramic as the most promising material for accident tolerant fuel. Since SiC has less active characteristics in the presence of high temperature water steam (H2O) and is expected to be tolerant of severe accident conditions. Moreover, SiC has a smaller neutron absorption cross-section which is advantageous feature in terms of neutron economy. Zirconium alloys (Zry) are one of the main structural materials in LWR core. In high temperature H2O environment under severe accident conditions, Zry rapidly reacts with H2O and oxidation reaction accompanied by release of hydrogen gas occurs. Since SiC may inhibit the progress of oxidation reaction compared to Zry metal alloys, hydrogen and heat generation is expected to decrease in the case of core uncovered accident conditions. In order to confirm the advantage of SiC over Zry as core materials, transient analysis and safety analysis are carried out. For transient analysis, analyses of temperature behavior of cladding at plant transient condition are carried out with best-estimate transient analysis code. This analysis confirmed the effect of physical properties differences between SiC and Zry on cladding temperature behavior. Moreover to indicate the effectiveness of SiC under the core uncovered condition with oxidation reaction, safety analysis with latest “MAAP” code is carried out and the whole plant behavior during severe accident sequence is simulated. This analysis showed the effectiveness of SiC to mitigate the oxidation reaction. As the result of these analyses, the advantage of SiC over Zry can be perceived. And also, future challenges of SiC application as ATF can be clarified through these analyses.


Author(s):  
Longze Li ◽  
Jue Wang ◽  
Yapei Zhang ◽  
G. H. Su

The natural circulation small modular reactor (NCSMR) is a 330 MW reactor which has no reactor coolant pumps (RCP) and no active safety injection systems at all. The reactor is mainly comprised of the reactor pressure vessel (RPV) with integral pressurize r and steam generator. RPV is enclosed by a vacuumed pressure containment vessel (PCV) and the PCV is submerged in the underground containment pool. A MELCOR model and corresponding input deck are developed for the RPV, PCV, and containment pool. The containment pool takes the role of ultimate heat sink (UHS) in accident situations. The containment pool may crack and leak in some critical accidents as the earthquake, leading to the severe accident of the reactor. A TMI-2 like SBLOCA in the RPV (stuck open RVVs) along with the containment pool crack (loss of ultimate heat sink) is simulated in the work. So me key parameters as the RRVs stuck open fraction, the PCV-SRVs open or not, the containment pool crack position would have large influence on the severe accident sequence. The sensitivity of these parameters to the accident sequence is analyzed in the work. According to the simulation results, the RPV pressure decreased with the RRVs stuck open. The depressurization of RPV accelerated with the RPV-SRV open fraction increase. The PCV pressure increased after that. Two cases as the PCV-SRV open after PCV pressure increase to 5 MPa, and PCV break while the RV d id not open, are analysis. The coolant discharge mass flo wrate in RPV and PCV were different in two cases, leading to the different degradation situation of the core. Since the containment pool is so important for the accident mitigation, sensitivity analysis is done for the containment pool crack position in the pool. The work will be meaningful in gaining an insight into the detailed process involved. One of the final goals of this work would be to identify appropriate accident management strategies and countermeasures for the potential extreme natural hazard induced severe accidents during the design process of NCSMR.


Author(s):  
Esam Hussein

Abstract Most emerging small modular reactor (SMR) designs resemble older reactors that were designed in the early days of the nuclear technology. Experience with operating these old reactors can contribute to the licensing of new SMRs, by showing that some safety concepts were already proven, and their viability was demonstrated. This paper shows examples of older reactors in each of the reemerging SMR concepts of integrated pressurized water reactors, high temperature gas cooled reactors, molten salt reactors, and liquid metal cooled fast reactors. The Canadian experience with the WR-1 organic cooled reactor is also discussed to examine whether it can inform the development on an organic cooled SMR.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Min Yoo ◽  
Sung Min Shin ◽  
Hyun Gook Kang

Reliable information through instrumentation systems is essential in mitigating severe accidents such as the one that occurred at the Fukushima Daiichi nuclear power plant. There are five elements which might pose a potential threat to the reliability of parameter detection at nuclear power plants during a severe accident: high temperature, high pressure, high humidity, high radiation, and missiles generated during the evolution of a severe accident. Of these, high temperature apparently poses the most serious threat, since thin shielding can get rid of pressure, humidity, radiation (specifically, alpha and beta radiations), and missile effects. In view of this fact, our study focused on designing an instrument transmitter protecting device that can eliminate the high-temperature effect on transmitters to maintain their functional integrity. We present herein a novel concept for designing such a device in terms of heat transfer model that takes into account various heat transfer mechanisms associated with the device.


Author(s):  
Kenta Shimomura ◽  
Takashi Onizawa ◽  
Shoichi Kato ◽  
Masanori Ando ◽  
Takashi Wakai

This paper describes the formulation of material characteristics of austenitic stainless steels at extremely high temperature which meets in some kinds of severe accidents of nuclear power plants. After the severe accident in Fukushima dai-ichi nuclear power plants, it has been supposed to be very important not only to prevent the occurrence of abnormal conditions, i.e. from the first to the third layer safety, but also to prevent the expansion of the accident conditions, i.e. the fourth layer safety[1] [2]. In order to evaluate the structural integrity under the severe accident condition, material characteristics which can be used in the numerical analyses, such as finite element analysis, were required [3] [4]. However, there were no material characteristics applicable to the structural integrity assessment at extremely high temperature. Therefore, a series of tensile and creep tests was performed for austenitic stainless at extremely high temperature which meets in some kinds of severe accidents of nuclear power plants, namely up to 1000 °C. Based on the acquired data from the tests, monotonic stress-strain equation and creep rupture equation applicable to the structural analysis at extremely high temperature, up to 1000 °C were formulated. As a result, these formulae make it possible to conduct the structural integrity assessment using numerical analysis techniques, such as finite element method.


Sign in / Sign up

Export Citation Format

Share Document