scholarly journals Simulation of a severe accident at a typical PWR due to break of a hot leg ECCS injection line using MELCOR code.

2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Seung Min Lee ◽  
Nelbia Da Silva Lapa ◽  
Gaianê Sabundjian

The aim of this work was to simulate a severe accident at a typical PWR, initiated with a break in Emergency Core Cooling System line of a hot leg, using the MELCOR code. The model of this typical PWR was elaborated by the Global Research for Safety and provided to the CNEN for independent analysis of the severe accidents at Angra 2, which is similar to this typical PWR. Although both of them are not identical, the results obtained of that typical PWR may be valuable because of the lack of officially published simulation of severe accident at Angra 2. Relevant parameters such as pressure, temperature and water level in various control volumes, after the break at the hot leg, were calculated as well as degree of core degradation and hydrogen production within the containment. The result obtained in this work could be considered satisfactory in the sense that the physical phenomena reproduced by the simulation were in general very reasonable, and most of the events occurred within acceptable time intervals. However, the uncertainty analysis was not carried out in this work. Furthermore, this scenario could be used as a base for the study of the effectiveness of some preventive or/and mitigating measures of Severe Accident Management by implementing each measure in this model.

Author(s):  
Gheorghe Negut ◽  
Ilie Prisecaru ◽  
Alexandru Catana ◽  
Daniel Dupleac

Romania is now a UE member since January first 2007. New challenges are for our country that includes, also, their nuclear power reactors. Romania operates since 1996 a CANDU nuclear power reactor and soon will start up a second unit. In EU are operated PWR reactors, so, ours have to meet UE standards. Safety analysis guidelines require to model severe accidents for these types of reactors. Starting from previous studies a CANDU degraded core thermalhydraulic model was developed. The initiating event is a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 1000 C, a contact between pressure tube and calandria tube occurs and the decay heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) uncover, then disintegrate and fall down to the calandria vessel bottom. All the quantity of calandria moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which surrounds the calandria vessel. The thermal hydraulics phenomena described above are modeled, analyzed and compared with the existing data.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hao Yu ◽  
Minjun Peng

Interest in evaluation of severe accidents induced by extended station blackout (ESBO) has significantly increased after Fukushima. In this paper, the severe accident process under the high and low pressure induced by an ESBO for a small integrated pressurized water reactor (IPWR)-IP200 is simulated with the SCDAP/RELAP5 code. For both types of selected scenarios, the IP200 thermal hydraulic behavior and core meltdown are analyzed without operator actions. Core degradation studies firstly focus on the changes in the core water level and temperature. Then, the inhibition of natural circulation in the reactor pressure vessel (RPV) on core temperature rise is studied. In addition, the phenomena of core oxidation and hydrogen generation and the reaction mechanism of zirconium with the water and steam during core degradation are analyzed. The temperature distribution and time point of the core melting process are obtained. And the IP200 severe accident management guideline (SAMG) entry condition is determined. Finally, it is compared with other core degradation studies of large distributed reactors to discuss the influence of the inherent design characteristics of IP200. Furthermore, through the comparison of four sets of scenarios, the effects of the passive safety system (PSS) on the mitigation of severe accidents are evaluated. Detailed results show that, for the quantitative conclusions, the low coolant storage of IP200 makes the core degradation very fast. The duration from core oxidation to corium relocation in the lower-pressure scenario is 53% faster than that of in the high-pressure scenario. The maximum temperature of liquid corium in the lower-pressure scenario is 134 K higher than that of the high-pressure scenario. Besides, the core forms a molten pool 2.8 h earlier in the lower-pressure scenario. The hydrogen generated in the high-pressure scenario is higher when compared to the low-pressure scenario due to the slower degradation of the core. After the reactor reaches the SAMG entry conditions, the PSS input can effectively alleviate the accident and prevent the core from being damaged and melted. There is more time to alleviate the accident. This study is aimed at providing a reference to improve the existing IPWR SAMGs.


Author(s):  
Jarne R. Verpoorten ◽  
Miche`le Auglaire ◽  
Frank Bertels

During a hypothetical Severe Accident (SA), core damage is to be expected due to insufficient core cooling. If the lack of core cooling persists, the degradation of the core can continue and could lead to the presence of corium in the lower plenum. There, the thermo-mechanical attack of the lower head by the corium could eventually lead to vessel failure and corium release to the reactor cavity pit. In this paper, it is described how the international state-of-the-art knowledge has been applied in combination with plant-specific data in order to obtain a custom Severe Accident Management (SAM) approach and hardware adaptations for existing NPPs. Also the interest of Tractebel Engineering in future SA research projects related to this topic will be addressed from the viewpoint of keeping the analysis up-to-date with the state-of-the art knowledge.


Author(s):  
Tamás János Katona ◽  
András Vilimi

Paks Nuclear Power Plant identified the post-Fukushima actions for mitigation and management of severe accidents caused by external events that include updating of some hazard assessments, evaluation of capacity / margins of existing severe accident management facilities, and construction of some mew systems and facilities. In all cases, the basic question was, what level of margin has to be ensured above design basis external hazard effects, and what level of or hazard has to be taken for the design. Paks Nuclear Power Plant developed certain an applicable in the practice concept for the qualification of already implemented and design the new post-Fukushima measures that is outlined in the paper. The concept and practice is presented on several examples.


Author(s):  
Arcadii E. Kisselev ◽  
Valerii F. Strizhov ◽  
Alexander D. Vasiliev ◽  
Vladimir I. Nalivayev ◽  
Nikolay Ya. Parshin

The PARAMETER-SF3 test conditions simulated a severe LOCA (Loss of Coolant Accident) nuclear power plant sequence in which the overheated up to 1700÷2300K core would be reflooded from the top and the bottom in occasion of ECCS (Emergency Core Cooling System) recovery. The test was successfully conducted at the NPO “LUTCH”, Podolsk, Russia, in October 31, 2008, and was the third of four experiments of series PARAMETER-SF. PARAMETER facility of NPO “LUTCH”, Podolsk, is designed for studies of the VVER fuel assemblies behavior under conditions simulating design basis, beyond design basis and severe accidents. The test bundle was made up of 19 fuel rod simulators with a length of approximately 3.12 m (heated rod simulators) and 2.92 m (unheated rod simulator). Heating was carried out electrically using 4-mm-diameter tantalum heating elements installed in the center of the rods and surrounded by annular UO2 pellets. The rod cladding was identical to that used in VVERs: Zr1%Nb, 9.13 mm outside diameter, 0.7 mm wall thickness. After the maximum cladding temperature of about 1900K was reached in the bundle during PARAMETER-SF3 test, the top flooding was initiated. The thermal hydraulic and SFD (Severe Fuel Damage) best estimate numerical complex SOCRAT/V2 was used for the calculation of PARAMETER-SF3 experiment. The counter-current flow limitation (CCFL) model was implemented to best estimate numerical code SOCRAT/V2 developed for modeling thermal hydraulics and severe accident phenomena in a reactor. Thermal hydraulics in PARAMETER-SF3 experiment played very important role and its adequate modeling is important for the thermal analysis. The results obtained by the complex SOCRAT/V2 were compared with experimental data concerning different aspects of thermal hydraulics behavior including the CCFL phenomenon during the reflood. The temperature experimental data were found to be in a good agreement with calculated results. It is indicative of the adequacy of modeling the complicated thermo-hydraulic behavior in the PARAMETER-SF3 test.


2021 ◽  
Vol 8 (3A) ◽  
Author(s):  
Maritza Rodríguez Gual ◽  
Nathalia N. Araújo ◽  
Marcos C. Maturana

After the two most significant nuclear accidents in history – the Chernobyl Reactor Four explosion in Ukraine(1986) and the Fukushima Daiichi accident in Japan (2011) –, the Final Safety Analysis Report (FSAR) included a new chapter (19) dedicated to the Probabilistic Safety Assessment (PSA) and Severe Accident Analysis (SAA), covering accidents with core melting. FSAR is the most important document for licensing of siting, construction, commissioning and operation of a nuclear power plant. In the USA, the elaboration of the FSAR chapter 19 is according to the review and acceptance criteria described in the NUREG-0800 and U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide (RG) 1.200. The same approach is being adopted in Brazil by National Nuclear Energy Commission (CNEN). Therefore, the FSAR elaboration requires a detailed knowledge of severe accident phenomena and an analysis of the design vulnerabilities to the severe accidents, as provided in a PSA – e.g., the identification of the initiating events involving significant Core Damage Frequency (CDF) are made in the PSA Level 1. As part of the design and certification activities of a plant of reference, the Laboratory of Risk Analysis, Evaluating and Management (LabRisco), located in the University of São Paulo (USP), Brazil, has been preparing a group of specialists to model the progression of severe accidents in Pressurized Water Reactors (PWR), to support the CNEN regulatory expectation – since Brazilian Nuclear Power Plants (NPP), i.e., Angra 1, 2 and 3, have PWR type, the efforts of the CNEN are concentrated on accidents at this type of reactor. The initial investigation objectives were on completing the detailed input data for a PWR cooling system model using the U.S. NRC MELCOR 2.2 code, and on the study of the reference plant equipment behavior – by comparing this model results and the reference plant normal operation main parameters, as modeled with RELAP5/MOD2 code.


Author(s):  
Wang Ning ◽  
Chen Lei ◽  
Zhang Jiangang ◽  
Yang Yapeng ◽  
Xu Xiaoxiao ◽  
...  

Great interest in severe accident has been motivated since Fukushima accident, which indicates that the probability of severe accident exists even though it is extremely small. Emergency condition is important in decision making in case of severe accident in NPP. Although many studies have been conducted for severe accident, there was necessary to investigate emergency condition of severe accidents that could possibly happen and haven’t been sufficiently analyzed. Since station blackout (SBO) happened in Fukushima accident, a number of studies in severe accidents initiated by SBO have been carried out. Off-site power is assumed to be lost during large break loss of coolant accident (LBLOCA), but there is few study to find out emergency condition during LBLOCA if both of off-site and on-site power are lost. A hypothetical severe accident initiated by LBLOCA along with SBO in a China three-loop PWR was simulated in the paper using MELCOR code. Emergency condition was obtained including start of core uncover, start of zirconium-water reaction, failure of fuel cladding and failure of the lower head. Thermal-hydraulic response of the core during the accident was also analyzed in the paper. The model for this study consists of 46 control volumes (27 in primary loop, 17 in secondary loop, 1 in containment and 1 in environment) and 52 flow paths. High pressure safety injection (HPSI) and low pressure safety injection (LPSI) are lost because of loss of on-site and off-site power, and simultaneously main feed water and auxiliary feed water of the steam generators are lost for the same reason. The accumulator can inject water into the core since it is passive and doesn’t need any power. Results of the study will be useful in gaining an insight into detailed severe accident emergency condition that could happen in a China three-loop PWR and may provide basis for severe accident mitigation.


Author(s):  
Alexander D. Vasiliev

The PARAMETER-SF3 test conditions simulated a severe LOCA (Loss of Coolant Accident) nuclear power plant sequence in which the overheated up to 1700–2300K core would be reflooded from the top and the bottom in occasion of ECCS (Emergency Core Cooling System) recovery. The test was successfully conducted at the NPO “LUTCH”, Podolsk, Russia, in October 31, 2008, and was the third of four experiments of series PARAMETER-SF. PARAMETER facility of NPO “LUTCH”, Podolsk, is designed for studies of the VVER fuel assemblies behavior under conditions simulating design basis, beyond design basis and severe accidents. The test bundle was made up of 19 fuel rod simulators with a length of approximately 3.12 m (heated rod simulators) and 2.92 m (unheated rod simulator). Heating was carried out electrically using 4-mm-diameter tantalum heating elements installed in the center of the rods and surrounded by annular UO2 pellets. The rod cladding was identical to that used in VVERs: Zr1%Nb, 9.13 mm outside diameter, 0.7 mm wall thickness. After the maximum cladding temperature of about 1900K was reached in the bundle during PARAMETER-SF3 test, the top flooding was initiated. The thermal hydraulic and SFD (Severe Fuel Damage) best estimate numerical complex SOCRAT/V2 was used for the calculation of PARAMETER-SF3 experiment. The counter-current flow limitation (CCFL) model was implemented to best estimate numerical code SOCRAT/V2 developed for modeling thermal hydraulics and severe accident phenomena in a reactor. Thermal hydraulics in PARAMETER-SF3 experiment played very important role and its adequate modeling is important for the thermal analysis. The results obtained by the complex SOCRAT/V2 were compared with experimental data concerning different aspects of thermal hydraulics behavior including the CCFL phenomenon during the reflood. The temperature experimental data were found to be in a good agreement with calculated results. It is indicative of the adequacy of modeling the complicated thermo-hydraulic behavior in the PARAMETER-SF3 test.


2020 ◽  
Vol 6 ◽  
pp. 39
Author(s):  
Jean-Pierre Van Dorsselaere ◽  
Ahmed Bentaib ◽  
Thierry Albiol ◽  
Florian Fichot ◽  
Alexei Miassoedov ◽  
...  

The Fukushima-Daiichi accidents in 2011 underlined the importance of severe accident management (SAM), including external events, in nuclear power plants (NPP) and the need of implementing efficient mitigation strategies. To this end, the Euratom work programmes for 2012 and 2013 was focused on nuclear safety, in particular on the management of a possible severe accident at the European level. Relying upon the outcomes of the successful Euratom SARNET and SARNET2 projects, new projects were launched addressing the highest priority issues, aimed at reducing the uncertainties still affecting the main phenomena. Among them, PASSAM and IVMR project led by IRSN, ALISA and SAFEST projects led by KIT, CESAM led by GRS and sCO2-HeRO lead by the University of Duisburg-Essen. The aim of the present paper is to give an overview on the main outcomes of these projects.


Sign in / Sign up

Export Citation Format

Share Document