scholarly journals Statistical Models in Estimating Air Temperature in a Mountainous Region of Greece

2017 ◽  
Vol 12 (3) ◽  
pp. 544-549 ◽  
Author(s):  
Stelios Maniatis ◽  
Kostas Chronopoulos ◽  
Aristidis Matsoukis ◽  
Athanasios Kamoutsis

The current work focuses on the estimation of air temperature (T) conditions in two high altitude (alt) sites (1580 m), each one at different orientation (southeast and northwest) in the mountain (Mt) Aenos in the island of Cephalonia, Greece, by using two well-known statistical models, simple linear regression (SLR) and multi-layer perceptron ( MLP), one of the most commonly used artificial neural networks. More specifically, the estimation of mean, maximum and minimum T in high alt sites was based on the respective T data of two lower alt sites (1100 m), the first at southeast and the second at northwest orientations, and was carried out separately for each orientation. The performance of both SLR and MLP models was evaluated by the coefficient of determination (R2) and the Mean Absolute Error (MAE). Results showed that the examined models (SLR and MLP) provided very satisfactory results with regard to the estimation of mean, maximum and minimum T, regarding southeast orientation (R2 ranging from 0.96 to 0.98), with mean T estimation being relatively better, as confirmed by the lowest MAE (0.83). Regarding northwest orientation, T estimation was less accurate (lower R2 and higher MAE), compared to the respective estimation of southeast orientation, but, the results were considered adequate (R2 and MAE ranging from 0.88 to 0.92 and 1.00 to 1.40, respectively). In general, the estimations of the mean T were better than those of the extreme ones (minimum and maximum T). In addition, better results (higher R2 and lower, in general, MAE) were obtained when T estimations were based on T data derived from sites located at areas with similar surroundings, as in the case of dense and tall vegetation of the sites at southeast orientation, irrespective of applied method.

2017 ◽  
Vol 12 (1) ◽  
pp. 01-05 ◽  
Author(s):  
Aristidis Matsoukis ◽  
Konstantinos Chronopoulos

The efficiency of applying linear regression (LR) and artificial neural network (ANN) models to estimate inside air temperature (T) of a glasshouse (37o48΄20΄΄N, 23o57΄48΄΄E), Lavreotiki, was investigated in the present work. The T data from an urban meteorological station (MS) at 37058΄55΄΄N, 23o32΄14΄΄E, Athens, Attica, Greece, about 30 Km away from the glasshouse, were used as predictor variable, taking into account the actual time of measurement (ATM) and two hours earlier (ATM-2), depending on the case. Air temperature data were monitored in each examined area (glasshouse and MS) for four successive months (July-October) and averages on a two-hour basis were used for the aforementioned estimation. Results showed that ANN were better than LR models, considering their better performance as shown in the scatterplots of the distribution of observed versus estimated inside T data of the glasshouse, in terms of both higher coefficient of determination (R2) and lower mean absolute error (MAE). The best ANN model (highest R2 and lowest MAE) was achieved by using as predictor variables the T at ATM and the T at ATM-2 from MS. The findings of our study may be a first step towards the estimation of inside T of a glasshouse in Greece, from outside T data of a remote MS. Thus, the operation of the glasshouse could be improved noticeably.


2021 ◽  
pp. 875697282199994
Author(s):  
Joseph F. Hair ◽  
Marko Sarstedt

Most project management research focuses almost exclusively on explanatory analyses. Evaluation of the explanatory power of statistical models is generally based on F-type statistics and the R 2 metric, followed by an assessment of the model parameters (e.g., beta coefficients) in terms of their significance, size, and direction. However, these measures are not indicative of a model’s predictive power, which is central for deriving managerial recommendations. We recommend that project management researchers routinely use additional metrics, such as the mean absolute error or the root mean square error, to accurately quantify their statistical models’ predictive power.


2013 ◽  
Vol 30 (8) ◽  
pp. 1757-1765 ◽  
Author(s):  
Sayed-Hossein Sadeghi ◽  
Troy R. Peters ◽  
Douglas R. Cobos ◽  
Henry W. Loescher ◽  
Colin S. Campbell

Abstract A simple analytical method was developed for directly calculating the thermodynamic wet-bulb temperature from air temperature and the vapor pressure (or relative humidity) at elevations up to 4500 m above MSL was developed. This methodology was based on the fact that the wet-bulb temperature can be closely approximated by a second-order polynomial in both the positive and negative ranges in ambient air temperature. The method in this study builds upon this understanding and provides results for the negative range of air temperatures (−17° to 0°C), so that the maximum observed error in this area is equal to or smaller than −0.17°C. For temperatures ≥0°C, wet-bulb temperature accuracy was ±0.65°C, and larger errors corresponded to very high temperatures (Ta ≥ 39°C) and/or very high or low relative humidities (5% < RH < 10% or RH > 98%). The mean absolute error and the root-mean-square error were 0.15° and 0.2°C, respectively.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 905
Author(s):  
Midyan Aldabash ◽  
Filiz Bektas Balcik ◽  
Paul Glantz

This study validated MODIS (Moderate Resolution Imaging Spectroradiometer) of the National Aeronautics and Space Agency, USA, Aqua and Terra Collection 6.1, and MERRA-2 (Modern-ERA Retrospective Analysis for Research and Application) Version 2 of aerosol optical depth (AOD) at 550 nm against AERONET (Aerosol Robotic Network) ground-based sunphotometer observations over Turkey. AERONET AOD data were collected from three sites during the period between 2013 and 2017. Regression analysis showed that overall, seasonally and daily statistics of MODIS are better than MERRA-2 by the mean of coefficient of determination (R2), mean absolute error (MAE), and relative root mean square deviation (RMSDrel). MODIS combined Terra/Aqua AOD and MERRA-2 AOD corresponding to morning and noon hours resulted in better results than individual sub datasets. A clear annual cycle in AOD was detected by the three platforms. However, overall, MODIS and MERRA-2 tend to overestimate and underestimate AOD, respectively, in comparison with AERONET. MODIS showed higher efficiency in detecting extreme events than MERRA-2. There was no clear relation found between the accuracy in MODIS/MERRA-2 AOD and surface relative humidity (RH).


2021 ◽  
Vol 2 (5) ◽  
pp. 8-13
Author(s):  
Proenza Y. Roger ◽  
Camejo C. José Emilio ◽  
Ramos H. Rubén

The results obtained from the validation of the procedure ‟Quantification of the degradation index of Photovoltaic Grid Connection Systems” are presented, using statistical parameters, which corroborate its accuracy, achieving a coefficient of determination of 0.9896, a percentage of the root of the mean square of the error RMSPE = 1.498% and a percentage of the mean absolute error MAPE = 1.15%, evidencing the precision of the procedure.


2014 ◽  
Vol 926-930 ◽  
pp. 1159-1163
Author(s):  
Jia Song

As is a significant public health issue to predict the incidence of influenza, this paper present a supported vector regression (SVR) model based on an automated method which worked as the following steps: firstly, the automated method is used to select the texts which highly related to the influenza, and then the SVR algorithm will find out the nonlinear between each context. According to the result, when assessing by the root mean squared predict error, the mean absolute error and the mean absolute percent error of the whole system, the SVR performed much better than single support vector machine regression prediction. Also, the validity of this method is verified.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ferréol Berendt ◽  
Felipe de Miguel-Diez ◽  
Evelyn Wallor ◽  
Lubomir Blasko ◽  
Tobias Cremer

AbstractWithin the wood supply chain, the measurement of roundwood plays a key role due to its high economic impact. While wood industry mainly processes the solid wood, the bark mostly remains as an industrial by-product. In Central Europe, it is common that the wood is sold over bark but that the price is calculated on a timber volume under bark. However, logs are often measured as stacks and, thus, the volume includes not only the solid wood content but also the bark portion. Mostly, the deduction factors used to estimate the solid wood content are based on bark thickness. The aim of this study was to compare the estimation of bark volume from scaling formulae with the real bark volume, obtained by xylometric technique. Moreover, the measurements were performed using logs under practice conditions and using discs under laboratory conditions. The mean bark volume was 6.9 dm3 and 26.4 cm3 for the Norway spruce logs and the Scots pine discs respectively. Whereas the results showed good performances regarding the root mean square error, the coefficient of determination (R2) and the mean absolute error for the volume estimation of the total volume of discs and logs (over bark), the performances were much lower for the bark volume estimations only.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fatemeh Sayyahi ◽  
Saeed Farzin ◽  
Hojat Karami

The aim of this study is to evaluate the ability of soft computing models including multilayer perceptron- (MLP-) water wave optimization (MLP-WWO), MLP-particle swarm optimization (MLP-PSO), and MLP-genetic algorithm (MLP-GA), to simulate the daily and monthly reference evapotranspiration (ET) at the Aidoghmoush basin (Iran). Principal component analysis (PCA) was used to find the best input combination including the lagged ETs. According to the results, the ET values with 1, 2, and 3 (days) lags as well as those with 1, 2, and 3 (months) lags were the most effective variables in the formation of the PCs. The total variance proportion of inputs and eigenvalues was used to identify the most important variables. The accuracy of the models was assessed based on multiple statistical indices such as the mean absolute error (MAE), Nash–Sutcliff efficiency (NSE), and percent bias (PBIAS). The results showed that the performance of hybrid MLP models was better than that of the standalone MLP. The findings confirmed that the MLP-WWO could precisely predict ET.


2013 ◽  
Vol 52 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Atoossa Bakhshaii ◽  
Roland Stull

AbstractTwo noniterative approximations are presented for saturated pseudoadiabats (also known as moist adiabats). One approximation determines which moist adiabat passes through a point of known pressure and temperature, such as through the lifting condensation level on a skew T or tephigram. The other approximation determines the air temperature at any pressure along a known moist adiabat, such as the final temperature of a rising cloudy air parcel. The method used to create these statistical regressions is a relatively new variant of genetic programming called gene-expression programming. The correlation coefficient between the resulting noniterative approximations and the iterated data such as plotted on thermodynamic diagrams is over 99.97%. The mean absolute error is 0.28°C, and the root mean square error is 0.44 within a thermodynamic domain bounded by −30° < θw ≤ 40°C, P > 20 kPa, and −60° ≤ T ≤ 40°C, where θw, P, and T are wet-bulb potential temperature, pressure, and air temperature.


2020 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Eric Järpe ◽  
Mattias Weckstén

A new method for musical steganography for the MIDI format is presented. The MIDI standard is a user-friendly music technology protocol that is frequently deployed by composers of different levels of ambition. There is to the author’s knowledge no fully implemented and rigorously specified, publicly available method for MIDI steganography. The goal of this study, however, is to investigate how a novel MIDI steganography algorithm can be implemented by manipulation of the velocity attribute subject to restrictions of capacity and security. Many of today’s MIDI steganography methods—less rigorously described in the literature—fail to be resilient to steganalysis. Traces (such as artefacts in the MIDI code which would not occur by the mere generation of MIDI music: MIDI file size inflation, radical changes in mean absolute error or peak signal-to-noise ratio of certain kinds of MIDI events or even audible effects in the stego MIDI file) that could catch the eye of a scrutinizing steganalyst are side-effects of many current methods described in the literature. This steganalysis resilience is an imperative property of the steganography method. However, by restricting the carrier MIDI files to classical organ and harpsichord pieces, the problem of velocities following the mood of the music can be avoided. The proposed method, called Velody 2, is found to be on par with or better than the cutting edge alternative methods regarding capacity and inflation while still possessing a better resilience against steganalysis. An audibility test was conducted to check that there are no signs of audible traces in the stego MIDI files.


Sign in / Sign up

Export Citation Format

Share Document