scholarly journals Microstructure Evolution in Polycrystalline Metal under Severe Plastic Deformation by Strain-Controlled Molecular Dynamics

2012 ◽  
Vol 6 (1) ◽  
pp. 48-60 ◽  
Author(s):  
Takeshi DAN ◽  
Ken-ichi SAITOH
2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


CrystEngComm ◽  
2022 ◽  
Author(s):  
ruibo ma ◽  
Lili Zhou ◽  
Yong-Chao Liang ◽  
Ze-an Tian ◽  
Yun-Fei Mo ◽  
...  

To investigate microstructural evolution and plastic deformation under tension conditions, the rapid solidification processes of Ni47Co53 alloy are first simulated by molecular dynamics methods at cooling rates of 1011, 1012...


2019 ◽  
Vol 11 (10) ◽  
pp. 1338-1348
Author(s):  
Zeyi Hu ◽  
Wenliang Liu ◽  
Caihe Fan

Micro-nanostructured materials have superior mechanical properties compared with coarse-grained materials. Severe plastic deformation (SPD) can effectively refine grains, resulting in the formation of typical micro-nanostructures. Fine grains improve alloy strength and toughness. This review summarizes the application of several typical SPD methods for high-Mg Al alloy. The effects of different SPD methods on the microstructure evolution, micro-nanostructure formation mechanism, and mechanical properties of the high-Mg Al alloy are analyzed in sequence. Finally, the development and future of the high-Mg Al alloy micro/nanostructure regulation are described.


Author(s):  
Avik Samanta ◽  
Ninggang Shen ◽  
Haipeng Ji ◽  
Weiming Wang ◽  
Jingjing Li ◽  
...  

Friction stir blind riveting (FSBR) process offers the ability to create highly efficient joints for lightweight metal alloys. During the process, a distinctive gradient microstructure can be generated for the work material near the rivet hole surface due to high-gradient plastic deformation and friction. In this work, discontinuous dynamic recrystallization (dDRX) is found to be the major recrystallization mechanism of aluminum alloy 6111 undergoing FSBR. A cellular automaton (CA) model is developed for the first time to simulate the evolution of microstructure of workpiece material during the dynamic FSBR process by incorporating main microstructure evolution mechanisms, including dislocation dynamics during severe plastic deformation, dynamic recovery, dDRX, and subsequent grain growth. Complex thermomechanical loading conditions during FSBR are obtained using a mesh-free Lagrangian particle-based smooth particle hydrodynamics (SPH) method, and are applied in the CA model to predict the microstructure evolution near the rivet hole. The simulation results in grain structure agree well with the experiments, which indicates that the important characteristics of microstructure evolution during the FSBR process are well captured by the CA model. This study presents a novel numerical approach to model and simulate microstructure evolution undergoing severe plastic deformation processes.


2018 ◽  
Vol 192 ◽  
pp. 02068
Author(s):  
Jittraporn Wongsa-Ngam ◽  
Chakkrist Phongphisutthinan ◽  
Terence G. Langdon

The microstructure evolution of an aluminum silicon-based alloy after severe plastic deformation processing was examined. An aluminum silicon-based alloy; Al-7wt%Si-2wt%Fe, was processed by the severe plastic deformation technique called high-pressure torsion at room temperature under a high pressure of 6.0 GPa and rotational speed of 1.0 rpm with numbers of revolution up to 5 turns. Microstructure evolution, especially intermetallic phase, was observed using an optical microscope and a scanning electron microscope (SEM). The effects of high-pressure torsion on the Fe intermetallic compounds in Al-Si alloy were investigated. It was found that the intermetallic particles decreased in size with increasing imposed strains.


2019 ◽  
Vol 946 ◽  
pp. 750-754
Author(s):  
A.O. Tolkushkin ◽  
Sergey N. Lezhnev ◽  
Abdrakhman B. Naizabekov

One of the main ways to improve product quality, obtained by forging, is implementing shear and alternating deformation (severe plastic deformation) during deformation process, which allows manufacturing products with required mechanical properties and less forging reduction. In practice, it is possible to implement shear and alternating deformation by improving the design of the ingots or the billets, forging tools, heating modes and forging method. In this paper newly designed forging die, which allows implementation of shear and alternating deformation without sufficient changes of the billet sizes, is proposed. By the research results of the new forging technology influence in the proposed tools on the microstructure evolution, it was found, that the use of the newly designed step-wedge dies has more potential for manufacturing high-quality forgings with required level of mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document