2A45 Cell Separation by the Use of Three Dimensional Non-uniform AC Electric Field

Author(s):  
Shigeru TADA ◽  
Kengo OHCHI ◽  
Akira TSUKAMOTO
2015 ◽  
Vol 656-657 ◽  
pp. 549-553
Author(s):  
Kyohei Nishimoto ◽  
Kozo Taguchi

Dielectrophoresis (DEP) force will arise when an inhomogeneous AC electric field with sinusoidal wave is applied to microelectrodes. By using DEP, we could distinguish between viable and non-viable cells by their movement through a non-uniform electric field. In this paper, we propose a yeast cell separation system, which utilizes an Au DEP chip and an optical tweezers. The Au DEP chip is planar quadrupole microelectrodes, which were fabricated by Au thin-film and a box cutter. This fabrication method is low cost and simpler than previous existing methods. The tip of the optical tweezers was fabricated by dynamic chemical etching in a mixture of hydrogen fluoride and toluene. The optical tweezers has the feature of high manipulation performance. That does not require objective lens for focusing light because the tip of optical tweezers has conical shape. By using both the Au DEP chip and optical tweezers, we could obtain three-dimensional manipulation of specific cells after viability separation.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hiromitsu Shirasawa ◽  
Jin Kumagai ◽  
Emiko Sato ◽  
Katsuya Kabashima ◽  
Yukiyo Kumazawa ◽  
...  

Abstract Recently, a new technique was developed for non-catalytically mixing microdroplets. In this method, an alternating-current (AC) electric field is used to promote the antigen–antibody reaction within the microdroplet. Previously, this technique has only been applied to histological examinations of flat structures, such as surgical specimens. In this study, we applied this technique for the first time to immunofluorescence staining of three-dimensional structures, specifically, mammalian eggs. We diluted an antibody against microtubules from 1:1,000 to 1:16,000 and compared the chromatic degree and extent of fading across dilutions. In addition, we varied the frequency of AC electric-field mixing from 5 Hz to 46 Hz and evaluated the effect on microtubule staining. Microtubules were more strongly stained after AC electric-field mixing for only 5 minutes, even when the concentration of primary antibody was 10 times lower than in conventional methods. AC electric-field mixing also alleviated microtubule fading. At all frequencies tested, AC electric-field mixing resulted in stronger microtubule staining than in controls. There was no clear difference in a microtubule staining between frequencies. These results suggest that the novel method could reduce antibody consumption and shorten immunofluorescence staining time.


Author(s):  
Hiromichi Obara ◽  
Shinichi Tashiro

A novel rod mixer, using a micro-scale flow structure induced with electrokinetics under an AC electric field, is proposed for three-dimensional micro-scale processing of biological applications. Flow structures around the micro-rod mixer are demonstrated using the micro-particle image velocimetry method and the particle-tracking velocimetry method. Characteristics of the flow structure and mixing property are investigated for several electric field intensities and frequencies. It is observed that the micro-mixing flow structures induced with an AC electric field at the appropriate intensity and frequency conditions which are intermediate conditions between a dielectrophoresis and an electrolysis. A source-type three-dimensional flow structure is generated around the tip of the micro-rod electrode installed in the sample liquid. Furthermore it is possible to control the scale of the flow structure by adjusting the supplied AC electric field intensity and frequency. The mixing characteristics are also discussed.


2007 ◽  
Vol 7 (12) ◽  
pp. 4322-4332 ◽  
Author(s):  
Zhihui Guo ◽  
Jeffery A. Wood ◽  
Krista L. Huszarik ◽  
Xiaohu Yan ◽  
Aristides Docoslis

The present work examines the behavior of multiwall carbon nanotubes (MWCNT) inside AC electric fields created by three-dimensional electrodes. The response of carbon nanotubes stably suspended in water with the aid of a nonionic surfactant is monitored by combining microscopic observations with on-line measurements of the suspension resistivity. It is found that polarization effects induced by the externally applied AC electric field on MWCNTs can cause their unidirectional orientation and end-to-end contact that result in formations of spatially distributed, long-range, three-dimensional and electrically conducting structures that span the entire gap between the electrodes. The length of the formed structures, which in the present case was approximately 30 times larger than that of an individual carbon nanotube, can be controlled by adjusting the spacing between the electrodes. The influence of main experimental parameters, namely, MWCNT concentration, applied voltage, AC field frequency, and electrode surface topography on the suspension behavior is experimentally examined. Results are demonstrated for applied voltage values, AC field frequencies, and carbon nanotube concentrations in the range 4–40 Vptp, 10 Hz–5 MHz, and 0.001–2.0 wt%, respectively. While higher electric field strengths accelerate the formation of aligned structures, higher frequency values were found to result in suspensions that exhibit smaller electrical resistivity. Carbon nanotube dispersions exposed to an AC electric field exhibit a 100-fold or more decrease in their electrical resistivity, even when carbon nanotube concentrations as low as 0.005 wt% are used.


1997 ◽  
Vol 473 ◽  
Author(s):  
Heng-Chih Lin ◽  
Edwin C. Kan ◽  
Toshiaki Yamanaka ◽  
Simon J. Fang ◽  
Kwame N. Eason ◽  
...  

ABSTRACTFor future CMOS GSI technology, Si/SiO2 interface micro-roughness becomes a non-negligible problem. Interface roughness causes fluctuations of the surface normal electric field, which, in turn, change the gate oxide Fowler-Nordheim tunneling behavior. In this research, we used a simple two-spheres model and a three-dimensional Laplace solver to simulate the electric field and the tunneling current in the oxide region. Our results show that both quantities are strong functions of roughness spatial wavelength, associated amplitude, and oxide thickness. We found that RMS roughness itself cannot fully characterize surface roughness and that roughness has a larger effect for thicker oxide in terms of surface electric field and tunneling behavior.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1622
Author(s):  
Wipawee Tepnatim ◽  
Witchuda Daud ◽  
Pitiya Kamonpatana

The microwave oven has become a standard appliance to reheat or cook meals in households and convenience stores. However, the main problem of microwave heating is the non-uniform temperature distribution, which may affect food quality and health safety. A three-dimensional mathematical model was developed to simulate the temperature distribution of four ready-to-eat sausages in a plastic package in a stationary versus a rotating microwave oven, and the model was validated experimentally. COMSOL software was applied to predict sausage temperatures at different orientations for the stationary microwave model, whereas COMSOL and COMSOL in combination with MATLAB software were used for a rotating microwave model. A sausage orientation at 135° with the waveguide was similar to that using the rotating microwave model regarding uniform thermal and electric field distributions. Both rotating models provided good agreement between the predicted and actual values and had greater precision than the stationary model. In addition, the computational time using COMSOL in combination with MATLAB was reduced by 60% compared to COMSOL alone. Consequently, the models could assist food producers and associations in designing packaging materials to prevent leakage of the packaging compound, developing new products and applications to improve product heating uniformity, and reducing the cost and time of the research and development stage.


Sign in / Sign up

Export Citation Format

Share Document