Experimental study on relationship between early invasive behavior and structural changes of extracellular matrix using cancer spheroids

2021 ◽  
Vol 2021.74 (0) ◽  
pp. C31
Author(s):  
Hayato UCHIO ◽  
Seiji OMATA ◽  
Yasuyuki MORITA
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Meenalakshmi M. Mariappan

Renal hypertrophy and accumulation of extracellular matrix proteins are among cardinal manifestations of diabetic nephropathy. TGF beta system has been implicated in the pathogenesis of these manifestations. Among signaling pathways activated in the kidney in diabetes, mTOR- (mammalian target of rapamycin-)regulated pathways are pivotal in orchestrating high glucose-induced production of ECM proteins leading to functional and structural changes in the kidney culminating in adverse outcomes. Understanding signaling pathways that influence individual matrix protein expression could lead to the development of new interventional strategies. This paper will highlight some of the diverse components of the signaling network stimulated by hyperglycemia with an emphasis on extracellular matrix protein metabolism in the kidney in diabetes.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Raja Nadif ◽  
Michael Emerson ◽  
Ulrike Mayer ◽  
Ludwig Neyses ◽  
Elizabeth Cartwright

Effective propagation of the electrical impulse throughout the myocardium is highly dependent on cell-to-cell and cell-to-extracellular matrix interactions. Increasing evidence indicates that dysregulation of cellular adhesion is a critical determinant in the genesis of arrhythmia. Null mutations in the integrin α7 gene, an essential mediator of cellular adhesion in cardiac and skeletal muscles, have been linked to myopathy in humans, however, the in vivo role of the integrin α7 subunit in the heart is undefined. The mouse model of integrin α7 deletion dies prematurely at one year of age. We therefore analysed the cardiac phenotype in integrin α7 deficient mice (α7 −/− ) to determine whether their premature death was associated with altered cardiac conduction. One year old integrin α7 −/− mice exhibited altered cardiac conduction characterised by spontaneous atrial fibrillation and prolonged QTc duration (α7 −/− : 25.7±0.74ms, α7 +/+ : 19.5±0.61ms; n=6; p<0.001, QTc=QT/(RR/100) 1/2 ). The abnormal cardiac conduction was associated with downregulation of connexin43. However, no significant changes were observed in the expression of ion chanels that have been linked to long QT syndrome or atrial fibrillation (kv1.1, kv1.5, kcne1, kcnq1, erg1, Cav1.2 and Cav1.3). In addition, α7 −/− mice displayed increased susceptibility to drug-induced arrhythmias: treatment with ouabain (2mg/kg BW) in combination with isoprenaline (2.5mg/kg BW) induced atrial fibrillation and ventricular tachycardia and eventually death in 6 month-old integrin α7 −/− mice, but not in α7 +/+ mice. Interestingly, α7 −/− also displayed concentric ventricular hypertrophy with increased septal wall thickness and reduced left ventricular end-diastolic diameter starting from 6 months of age. These structural changes were accompanied by an increase in myocyte size and increased ERK1/2 phosphorylation. In conclusion, deletion of the integrin α7 gene in mice leads to ventricular hypertrophy and to abnormal cardiac conduction. The integrin α7 deficient mice have a marked propensity to lethal arrhythmias through alterations in gap junctions but not ion channels. The integrin α7 knockout model provides new insight into the link between the extracellular matrix and cardiac conduction.


2019 ◽  
Vol 279 ◽  
pp. 02009
Author(s):  
Antonio Shopov ◽  
Borislav Bonev

Zone of yield strength is a part of stress-strain diagram on steel. In this zone is located an upper and lower yield strength points. These points are important for calculation and design of steel structures elements. When a structural element is corroded, its mechanical properties are changed i.e. changes the geometric characteristics, superficial defects appear and leads to structural changes of material. The facts unambiguously determine that in order to decide whether or not the corrosion element can be reuse, it is necessary to study the material and to determine the new values at the yield strength points. In order to legally make the necessary calculation in sizing and to judge for its reuse. The report studies a zone of yield strength on steel elements with corrosion. Experimental data was obtained, then processed using the stochastic method of processing empirically obtained data, and it was determined with sufficient probability the values to be used for calculation and design in practice.


1993 ◽  
Vol 30 (5) ◽  
pp. 401-409 ◽  
Author(s):  
G. Abebe ◽  
M. K. Shaw ◽  
R. M. Eley

The pituitary glands of seven Boran cattle ( Bos indicus), five infected with a clone of Trypanosoma congolense IL 1180 (ILNat 3.1) transmitted by Glossina morsitans centralis and two uninfected controls, were examined by light and electron microscopy 43 (experiment 2) or 56 (experiment 1) days after fly challenge. The three cattle used in the first experiment included a 15-month-old female (No. 1), a 24–month-old female (No. 2), and a 21–month-old male (No. 3) as a control. In the second experiment, four cattle were used: two females (Nos. 4, 5) and one male (No. 6), all between 15 and 24 months of age, and one female control (No. 7) of similar age. In all the infected animals, dilation of both the sinusoids and microvasculature was apparent, as was an increase in the thickness of the extracellular matrix between the pituitary lobules. Trypanosomes were found in the microvasculature of the adenohypophysis and neurohypophysis in all the infected animals. Focal degenerative changes were seen in the adenohypophyseal section of glands from the infected animals euthanatized 56 days post-infection. These degenerative structural changes were confined to the somatotrophs cells. The possible role that trypanosomes in the microvasculature may play in inducing pituitary damage and dysfunction is discussed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1587
Author(s):  
Caterina Cristallini ◽  
Emanuela Vitale ◽  
Claudia Giachino ◽  
Raffaella Rastaldo

To deliver on the promise of cardiac regeneration, an integration process between an emerging field, nanomedicine, and a more consolidated one, tissue engineering, has begun. Our work aims at summarizing some of the most relevant prevailing cases of nanotechnological approaches applied to tissue engineering with a specific interest in cardiac regenerative medicine, as well as delineating some of the most compelling forthcoming orientations. Specifically, this review starts with a brief statement on the relevant clinical need, and then debates how nanotechnology can be combined with tissue engineering in the scope of mimicking a complex tissue like the myocardium and its natural extracellular matrix (ECM). The interaction of relevant stem, precursor, and differentiated cardiac cells with nanoengineered scaffolds is thoroughly presented. Another correspondingly relevant area of experimental study enclosing both nanotechnology and cardiac regeneration, e.g., nanoparticle applications in cardiac tissue engineering, is also discussed.


2002 ◽  
Vol 7 (5) ◽  
pp. 544-548 ◽  
Author(s):  
Atsushi Takee ◽  
Jun Hirano ◽  
Chozo Uchikura ◽  
Shigeki Ohmori ◽  
Masazumi Kodera ◽  
...  

Author(s):  
Nasrin Majidi Gharenaz ◽  
Mansoureh Movahedin ◽  
Zohreh Mazaheri

Background: Biological scaffolds are derived by the decellularization of tissues or organs. Various biological scaffolds, such as scaffolds for the liver, lung, esophagus, dermis, and human testicles, have been produced. Their application in tissue engineering has created the need for cryopreservation processes to store these scaffolds. Objective: The aim was to compare the two methods for prolong storage testicular scaffolds. Materials and Methods: In this experimental study, 20 male NMRI mice (8 wk) were sacrificed and their testes were removed and treated with 0.5% sodium dodecyl sulfate followed by Triton X-100 0.5%. The efficiency of decellularization was determined by histology and DNA quantification. Testicular scaffolds were stored in phosphate-buffered saline solution at 4ºC or cryopreserved by programmed slow freezing followed by storage in liquid nitrogen. Masson’s trichrome staining, Alcian blue staining and immunohistochemistry, collagen assay, and glycosaminoglycan assay were done prior to and after six months of storage under each condition. Results: Hematoxylin-eosin staining showed no remnant cells after the completion of decellularization. DNA content analysis indicated that approximately 98% of the DNA was removed from the tissue (p = 0.02). Histological evaluation confirmed the preservation of extracellular matrix components in the fresh and frozen-thawed scaffolds. Extracellular matrix components were decreased by 4ºC-stored scaffolds. Cytotoxicity tests with mouse embryonic fibroblast showed that the scaffolds were biocompatible and did not have a harmful effect on the proliferation of mouse embryonic fibroblast cells. Conclusion: Our results demonstrated the superiority of the slow freezing method for prolong storage of testicular scaffolds. Key words: Cryopreservation, Testis, Scaffold, Mouse. 


Sign in / Sign up

Export Citation Format

Share Document