Precision Machining of Electroless Nickel Mandrel and Fabrication of Replicated Mirrors for a Soft X-Ray Microscope(Ultra-precision machining)

Author(s):  
Kwon Su Chon ◽  
Yoshiharu Namba ◽  
Kwon-Ha Yoon
2013 ◽  
Vol 552 ◽  
pp. 115-123
Author(s):  
Anthony T.H. Beaucamp ◽  
Yoshiharu Namba ◽  
Richard R. Freeman

Ultra-precision diamond turning can deliver very accurate form, often less than 100nm P-V. A possible manufacturing method for thin Wolter type-1 mirrors in hard X-ray space telescopes thus involves generating electroless nickel plated mandrels by diamond turning, before coating them with a reflective film and substrate. However, the surface texture after turning falls far short from the requirements of X-ray and EUV applications. The machining marks need to be removed, with hand polishing still widely employed. There is thus a compelling need for automated finishing of turned dies. A two step finishing method is presented that combines fluid jet and precessed bonnet polishing on a common 7-axis CNC platform. This method is capable of finishing diamond turned electroless nickel plated dies down to 0.28nm rms roughness, while deterministically improving form error down to 30nm P-V. The fluid jet polishing process, which consists of pressurizing water and abrasive particles for delivery through a nozzle, has been specially optimized with a newly designed slurry delivery unit and computer simulations, to remove diamond turning marks without introducing another waviness signature. The precessed bonnet polishing method, which consists of an inflated membrane rotated at an angle from the local normal to the surface and controlled by geometrical position relative to the work-piece, is subsequently employed with a novel control algorithm to deliver scratch-free surface roughness down to 0.28 nm rms. The combination of these two deterministic processes to finish aspheric and freeform dies promises to unlock new frontiers in X-ray and EUV optics fabrication.


2012 ◽  
Vol 516 ◽  
pp. 551-556
Author(s):  
Thanh Hung Duong ◽  
Kim Huyn Chul ◽  
Lee Dong Yoon

In recent years, there have been many studies concerning the effect of cutting parameters and tool parameters on the ultra precision machining of electroless nickel. However, there is no known reported study on the relationship between the cutting force and tool rake angle in ultra precision machining of electroless nickel. The objective of this study is to compare and investigate the cutting force with various rake angles for micro machining electroless nickel work pieces by theoretical analysis and experiment. Diamond tools with rake angles of-10o, 0o and 10o were used in the experiment. According to theoretical analysis, the tool with a 10o rake angle induces the smallest cutting force. However, the experiment showed that the tool with zero rake angle always gave us the smallest cutting force for all cutting speeds, cutting depths and pattern pitches.


2013 ◽  
Vol 651 ◽  
pp. 344-349 ◽  
Author(s):  
Alokesh Pramanik ◽  
Animesh Basak

Electroless-nickel (EN) and very few other materials are suitable for ultra-precision machining. This material exhibits excellent properties such as hardness, corrosion resistance which are essential for molding die. This paper discusses the properties of EN and links with the ultra-precision machinability of this material. It is found that chip formation processes changes with the cutting condition. Phosphorus content and heat treatments significantly affect the machinability of EN in terms of tool wear, machining force and surface finish.


Author(s):  
C. W. Price ◽  
E. F. Lindsey

Thickness measurements of thin films are performed by both energy-dispersive x-ray spectroscopy (EDS) and x-ray fluorescence (XRF). XRF can measure thicker films than EDS, and XRF measurements also have somewhat greater precision than EDS measurements. However, small components with curved or irregular shapes that are used for various applications in the the Inertial Confinement Fusion program at LLNL present geometrical problems that are not conducive to XRF analyses but may have only a minimal effect on EDS analyses. This work describes the development of an EDS technique to measure the thickness of electroless nickel deposits on gold substrates. Although elaborate correction techniques have been developed for thin-film measurements by x-ray analysis, the thickness of electroless nickel films can be dependent on the plating bath used. Therefore, standard calibration curves were established by correlating EDS data with thickness measurements that were obtained by contact profilometry.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 929
Author(s):  
Xudong Yang ◽  
Zexiao Li ◽  
Linlin Zhu ◽  
Yuchu Dong ◽  
Lei Liu ◽  
...  

Taper-cutting experiments are important means of exploring the nano-cutting mechanisms of hard and brittle materials. Under current cutting conditions, the brittle-ductile transition depth (BDTD) of a material can be obtained through a taper-cutting experiment. However, taper-cutting experiments mostly rely on ultra-precision machining tools, which have a low efficiency and high cost, and it is thus difficult to realize in situ measurements. For taper-cut surfaces, three-dimensional microscopy and two-dimensional image calculation methods are generally used to obtain the BDTDs of materials, which have a great degree of subjectivity, leading to low accuracy. In this paper, an integrated system-processing platform is designed and established in order to realize the processing, measurement, and evaluation of taper-cutting experiments on hard and brittle materials. A spectral confocal sensor is introduced to assist in the assembly and adjustment of the workpiece. This system can directly perform taper-cutting experiments rather than using ultra-precision machining tools, and a small white light interference sensor is integrated for in situ measurement of the three-dimensional topography of the cutting surface. A method for the calculation of BDTD is proposed in order to accurately obtain the BDTDs of materials based on three-dimensional data that are supplemented by two-dimensional images. The results show that the cutting effects of the integrated platform on taper cutting have a strong agreement with the effects of ultra-precision machining tools, thus proving the stability and reliability of the integrated platform. The two-dimensional image measurement results show that the proposed measurement method is accurate and feasible. Finally, microstructure arrays were fabricated on the integrated platform as a typical case of a high-precision application.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 755
Author(s):  
Chen-Yang Zhao ◽  
Chi-Fai Cheung ◽  
Wen-Peng Fu

In this paper, an investigation of cutting strategy is presented for the optimization of machining parameters in the ultra-precision machining of polar microstructures, which are used for optical precision measurement. The critical machining parameters affecting the surface generation and surface quality in the machining of polar microstructures are studied. Hence, the critical ranges of machining parameters have been determined through a series of cutting simulations, as well as cutting experiments. First of all, the influence of field of view (FOV) is investigated. After that, theoretical modeling of polar microstructures is built to generate the simulated surface topography of polar microstructures. A feature point detection algorithm is built for image processing of polar microstructures. Hence, an experimental investigation of the influence of cutting tool geometry, depth of cut, and groove spacing of polar microstructures was conducted. There are transition points from which the patterns of surface generation of polar microstructures vary with the machining parameters. The optimization of machining parameters and determination of the optimized cutting strategy are undertaken in the ultra-precision machining of polar microstructures.


Sign in / Sign up

Export Citation Format

Share Document