scholarly journals Application of Critical Impact Velocity. High-Speed Blanking.

1995 ◽  
Vol 61 (586) ◽  
pp. 1344-1348
Author(s):  
Shinji Tanimura ◽  
Hu Wang ◽  
Hiroaki Morita ◽  
Koichi Kaizu ◽  
Masahiro Yamasaki ◽  
...  
Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.


Author(s):  
Shuguang Yao ◽  
Zhixiang Li ◽  
Wen Ma ◽  
Ping Xu ◽  
Quanwei Che

Coupler rubber buffers are widely used in high-speed trains, to dissipate the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are pre-compressed and then installed into the frame body. This paper specifically focuses on the energy absorption characteristics of the rubber buffers. Firstly, quasi-static compression tests were carried out for one and three pairs of rubber sheets, and the relationship between the energy absorption responses, i.e. Eabn  =  n ×  Eab1, Edissn =  n ×  Ediss1, and Ean =  Ea1, was obtained. Next, a series of quasi-static tests were performed for one pair of rubber sheet to investigate the energy absorption performance with different compression ratios of the rubber buffers. Then, impact tests with five impact velocities were conducted, and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The results of the impact tests showed that with the increase of the impact velocity, the Eab, Ediss, and Ea of the rear buffer increased significantly, but the three responses of the front buffer did not increase much. Finally, the results of the impact tests and quasi-static tests were contrastively analyzed, which showed that with the increase of the stroke, the values of Eab, Ediss, and Ea increased. However, the increasing rates of the impact tests were higher than that of the quasi-static tests. The maximum value of Ea was 68.76% in the impact tests, which was relatively a high value for the vehicle coupler buffer. The energy capacity of the rear buffer for dynamic loading was determined as 22.98 kJ.


2021 ◽  
Vol 928 ◽  
Author(s):  
Pierre Chantelot ◽  
Detlef Lohse

When a volatile drop impacts on a superheated solid, air drainage and vapour generation conspire to create an intermediate gas layer that delays or even prevents contact between the liquid and the solid. In this article, we use high-speed synchronized reflection interference and total internal reflection imaging to measure the short-time dynamics of the intermediate gas film and to probe the transition between levitation and contact. We observe that the substrate temperature strongly affects the vertical position of the liquid–gas interface and that the dynamic Leidenfrost transition is influenced by both air and vapour drainage (i.e. gas drainage), and evaporation, the latter giving rise to hitherto unreported vertical oscillations of the gas film that can trigger liquid–solid contact. We first derive scaling relations for the height of the gas film trapped under the drop's centreline, called the dimple height, and the minimum film thickness at short times. The former is set by a competition between gas drainage and liquid inertia, similarly as for isothermal impacts, while the latter strongly depends on the vapour production. The gas pressure, at the location where the minimum thickness is reached, is determined by liquid inertia and vapour production and ultimately balanced by the increasing interfacial curvature, determining the minimum thickness. We show that, in the low impact velocity limit, the transient stability of the draining gas film remarkably makes dynamic levitation less demanding than static levitation. We characterize the vertical gas film oscillations by measuring their frequency and monitoring their occurrence in the parameter space spanned by surface temperature and impact velocity. Finally, we model the occurrence of these oscillations and account for their frequency through a hydrodynamic mechanism.


1983 ◽  
Vol 105 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ian V. Lau

The effects of impact timing during the cardiac cycle on the sensitivity of the heart to impact-induced rupture was investigated in an open-chest animal model. Direct mechanical impacts were applied to two adjacent sites on the exposed left ventricular surface at the end of systole or diastole. Impacts at 5 m/s and a contact stroke of 5 cm at the end of systole resulted in no cardiac rupture in seven animals, whereas similar impacts at the end of diastole resulted in six cardiac ruptures. Direct impact at 15 m/s and a contact stroke of 2 cm at the end of either systole or diastole resulted in perforationlike cardiac rupture in all attempts. At low-impact velocity the heart was observed in high-speed movie to bounce away from the impact interface during a systolic impact, but deform around the impactor during a diastolic impact. The heart generally remained motionless during the downward impact stroke at high-impact velocity in either a systolic or diastolic impact. The lower ventricular pressure, reduced muscle stiffness, thinner myocardial wall and larger mass of the filled ventricle probably contributed to a greater sensitivity of the heart to rupture in diastole at low-impact velocity. However, the same factors had no role at high-impact velocity.


Author(s):  
Sung R. Choi

Foreign object damage (FOD) behavior of two gas-turbine grade silicon nitrides (AS800 and SN282) was determined with a considerable sample size at ambient temperature using impact velocities ranging from 50 to 225 m/s by 1.59-mm diameter silicon nitride ball projectiles. The degree of impact damage as well as of post-impact strength degradation increased with increasing impact velocity, and was greater in SN282 than in AS800 silicon nitride. The critical impact velocity in which target specimens fractured catastrophically was remarkably low: about 200 and 130 m/s, respectively, for AS800 and SN282. The difference in the critical impact velocity and impact damage between the two target silicon nitrides was attributed to the fracture toughness of the target materials. The FOD by silicon nitride projectiles was significantly greater than that by steel ball projectiles. Prediction of impact force was made based on a yield model and compared with the conventional Hertzian contact-stress model.


1998 ◽  
Vol 42 (03) ◽  
pp. 187-198 ◽  
Author(s):  
Lixin Xu ◽  
Armin W. Troesch ◽  
William S. Vorus

The paper proposes a two-dimensional theory for asymmetric impact problems of vessels with arbitrary geometry. The interaction of two body sides is incorporated into the hydrodynamic impact model. Following Vorus's (1996) flat-cylinder theory, two types of flow models are established for cases of small and large asymmetry. The distinguishing difference between the two types is whether the flow is attached or separates at the keel on the first instances of impact. General solutions for such nonlinear boundary value problems are determined by solving the singular integral equations, while free-vortex shedding (jet-spraying) is carried out through a time-marching procedure. Initial conditions are derived from basic solutions of flat-sided contours with constant impact velocity. The method of discrete vortices is then applied to the prediction of slamming loads (including both lifting force and restoring moment) on typical two-dimensional sections of vessels with flat or nearly flat bottoms. Calculated results of both flow types, i.e., small and large asymmetry, are presented for various hull contours with constant or variable impact velocity. This approach also provides the foundation for future work involving traverse dynamic stability analysis of high speed planing hulls


2021 ◽  
Author(s):  
Zhenyu Yang ◽  
Zhen Li ◽  
Xin Ai ◽  
Xufeng Xu ◽  
Nengchao Li ◽  
...  

2015 ◽  
Author(s):  
Ali Mohtat ◽  
Ravi Challa ◽  
Solomon C. Yim ◽  
Carolyn Q. Judge

Numerical simulation and prediction of short duration hydrodynamic impact loading on a generic wedge impacting a water free-surface is investigated. The fluid field is modeled using a finite element (FE) based arbitrary Lagrangian-Eulerian (ALE) formulation and the structure is modeled using a standard Lagrangian FE approximation. Validation of the numerical method against experimental test data and closed form analytical solutions shows that the ALE-FE/FE continuum approach captures the impact behavior accurately. A detailed sensitivity analysis is conducted to study the role of air compressibility, deadrise angle, and impact velocity in estimation of maximum impact pressures. The pressure field is found to be insensitive to air compressibility effect for a wide range of impact velocities and deadrise angles. A semi-analytical prediction model is developed for estimation of maximum impact pressures that correlates deadrise angle, impact velocity, and a nonlinear interaction term that couples hydrodynamic effects between these parameters. The numerical method is also used to examine the intrinsic physics of water impact on a high-speed planing hull with the goal of predicting slamming loads and resulting motions.


Sign in / Sign up

Export Citation Format

Share Document