Genetic Variation for Green Pod Yield and Quality Among Vegetable Soybean Genotypes

2006 ◽  
Vol 16 (1-2) ◽  
pp. 113-130 ◽  
Author(s):  
Tadesse Mebrahtu ◽  
Ali Mohamed
jpa ◽  
1991 ◽  
Vol 4 (3) ◽  
pp. 395-399 ◽  
Author(s):  
Tadesse Mebrahtu ◽  
Ali Mohamed ◽  
Wondi Mersie

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 671
Author(s):  
Nagaraju Shilpashree ◽  
Sarojinikunjamma Nirmala Devi ◽  
Dalasanuru Chandregowda Manjunathagowda ◽  
Anjanappa Muddappa ◽  
Shaimaa A. M. Abdelmohsen ◽  
...  

Vegetable soybean production is dependent on the development of vegetable type varieties that would be achieved by the use of germplasm to evolve new agronomically superior yielding vegetable type with beneficial biochemical traits. This can be accomplished by a better understanding of genetics, which is why the research was conducted to reveal the quantitative genetics of vegetable soybean genotypes. Genetic variability of main morphological traits in vegetable soybean genotypes and their divergence was estimated, as a result of the magnitude of genotypic variation (GV), and phenotypic variation (PV) of traits varied among the genotypes. All traits showed high heritability (h2) associated with high genetic advance percentage mean (GAM). Therefore, these variable traits are potential for genetic improvement of vegetable type soybean. Genetic diversity is the prime need for breeding, and the magnitude of genetic diversity values were maximized among specific genotypes. Eight clusters were found for all genotypes; cluster VIII and cluster I were considered to have the most diversity. Cluster VIII consisted of two genotypes (GM-6 and GM-27), based on the mean outcomes of the high yield attributing traits. Hence, these two (GM-6, GM-27) genotypes can be advanced for commercial cultivation; furthermore, other genotypes can be used as source of breeding lines for genetic improvement of vegetable soybean.


Crop Science ◽  
2002 ◽  
Vol 42 (6) ◽  
pp. 1950 ◽  
Author(s):  
M. S. S. Rao ◽  
A. S. Bhagsari ◽  
A. I. Mohamed

Author(s):  
Fakhrusy Zakariyya ◽  
Adi Prawoto

An optimum physiological condition will support high yield and quality of cocoa production. The research was aimed to study the effects of stomatal conductance and chlorophyll content related to cocoa production under three shade regimes.This research was conducted in Kaliwining Experimental Station, elevation of 45 m above sea level with D climate type based on Schmidt & Fergusson. Cocoa trees which were planted in 1994 at a spacing of 3 X 3 m were used in the study planted by using split plot design. The shade tree species were teak (Tectona grandis), krete (Cassiasurattensis), and lamtoro (Leucaena sp.) as the main plots, and cocoa clones of Sulawesi 01,Sulawesi 02, KKM 22 and KW 165 as sub plots. This study showed that there was interaction between cocoa clone and shade species for stomatal conductance where stomatal diffusive resistance of KKM 22 was the best under Leucaena sp.and Cassiasurattensis with the values of 1.38 and 1.34 s.cm -1, respectively. The highest chlorophyll content, stomatal index and transpiration values was under Leucaena sp. shade. There was positive correlation between chlorophyll content and transpiration with pod yield of cocoa. The highest yield and the lowest bean count wereobtainedon Sulawesi 01 clone under Leucaenasp. shade.Keywords: stomatal conductance, transpiration, diffusive resistance, shades trees, clones,pod yield


HortScience ◽  
2014 ◽  
Vol 49 (10) ◽  
pp. 1298-1304 ◽  
Author(s):  
Elisha Otieno Gogo ◽  
Mwanarusi Saidi ◽  
Jacob Mugwa Ochieng ◽  
Thibaud Martin ◽  
Vance Baird ◽  
...  

French bean [Phaseolus vulgaris (L.)] is among the leading export vegetable in Africa, mostly produced by small-scale farmers. Unfavorable environmental conditions and heavy infestations by insect pests are among the major constraints limiting production of the crop. Most French bean producers grow their crop in open fields outdoors subject to harsh environmental conditions and repeatedly spray insecticides in a bid to realize high yield. This has led to rejection of some of the produce at the export market as a result of stringent limits on maximum residue levels. Two trials were conducted at the Horticulture Research and Teaching Field, Egerton University, Kenya, to evaluate the potential of using agricultural nets (herein referred to as agronets) to improve the microclimate, reduce pest infestation, and increase the yield and quality of French bean. A randomized complete block design with five replications was used. French bean seeds were direct-seeded, sprayed with an alpha-cypermethrin-based insecticide (control), covered with a treated agronet (0.9 mm × 0.7 mm average pore size made of 100 denier yarn knitted into a mesh impregnated with alpha-cypermethrin), or covered with an untreated-agronet (0.9 mm × 0.7 mm average pore size made of 100 denier yarn knitted into a mesh not impregnated with insecticide). Alpha-cypermethrin and agronets were manufactured by Tagros Chemicals (India) and A to Z Textile Mills (Tanzania), respectively. Covering French bean with the agronets modified the microclimate of the growing crop with air temperature increased by ≈10%, relative humidity by 4%, and soil moisture by 20%, whereas photosynthetic active radiation (PAR) and daily light integral (DLI) were decreased by ≈1% and 11.5%, respectively. Populations of silverleaf whitefly [Bemisia tabaci (Gennadius)] and black bean aphids [Aphis fabae (Scopoli)] were reduced under agronet covers as contrasted with control plots. Furthermore, populations of both pests were reduced on French bean grown under impregnated agronets compared with untreated agronets, but only on three of the five sampling dates [30, 44, and 72 days after planting (DAP)] for silver leaf whitefly or at only one of the five sampling dates (30 DAP) for black bean aphid. Covering French bean with agronets advanced seedling emergence by 2 days and increased seedling emergence over 90% compared with control plots. French bean plants covered with both agronet treatments had faster development, better pod yield, and quality compared with the uncovered plants. These findings demonstrate the potential of agronets in improving French bean performance while minimizing the number of insecticide sprays within the crop cycle, which could lead to less rejection of produce in the export market and improved environmental quality.


2021 ◽  
Vol 12 (07) ◽  
pp. 738-754
Author(s):  
Nick Lord ◽  
Thomas Kuhar ◽  
Steve Rideout ◽  
Kemper Sutton ◽  
Adam Alford ◽  
...  

HortScience ◽  
2016 ◽  
Vol 51 (9) ◽  
pp. 1079-1086 ◽  
Author(s):  
Rolland Agaba ◽  
Phinehas Tukamuhabwa ◽  
Patrick Rubaihayo ◽  
Silver Tumwegamire ◽  
Andrew Ssenyonjo ◽  
...  

The amount of genotypic and phenotypic variability that exists in a species is important for selection and initiating breeding programs. Yam bean is grown locally in tropical countries of the Americas and Asia for their tasty storage roots, which usually have low dry matter content. The crop was recently introduced in Uganda and other East and Central African countries to supplement iron (Fe) and protein content in diets. This study aimed to estimate genetic variability for root yield and quality traits among 26 yam bean accessions in Uganda. A randomized complete block design was used with two replications across two ecogeographical locations and two seasons during 2012 and 2013. Near-infrared reflectance spectroscopy (NIRS) was used to determine quality of storage root samples. Significant differences among genotypes were observed for all traits except root protein, zinc (Zn), and phosphorus contents. Genotypic variance components () were significant for storage root fresh yield (SRFY), storage root dry matter (SRDM), storage root dry yield (SRDY), vine yield (VNY), fresh biomass yield (FBY), and storage root starch (STA) and Fe contents. For traits with significant the broad sense heritability estimates ranged from 58.4% for SRDY to 83.6% for FBY; and phenotypic coefficients of variation were high for SRFY (66%), SRDY (53.3%), VNY (60.5%), and FBY (59%), but low to medium for SRDM (22.6%), STA (15.1%), and Fe (21.3%). Similarly, the genotypic coefficients of variation were high for SRFY (56.7%), SRDY (53.3%), VNY (55%), and FBY (53.9%); and low for SRDM (20%), STA (12.4%), and Fe (17.8%). There were strong positive correlations between SRFY and both SRDY (r = 0.926) and FBY (r = 0.962), but low-to-moderate correlations among quality traits. It should be possible to breed for high dry matter yam beans by using low dry matter accessions due to the observed genetic variation ( = 9.3%2), which is important if the high dry matter Pachyrhizus tuberosus accessions (known as chuin) from Peru cannot be accessed. This study indicated substantial genetic variation for yield and quality traits in yam bean, demonstrating potential for adaptability to growing conditions and consumer needs in East and Central Africa and for genetic improvement through selection.


1995 ◽  
pp. 151-158 ◽  
Author(s):  
M.E. FERREIRA ◽  
M.A.C. FROGOSO ◽  
M.F. FELIX ◽  
V.V. BIANCO ◽  
A. FERREIRA ◽  
...  

Author(s):  
S.R. Singh ◽  
N. Ahmed ◽  
D. B. Singh ◽  
K. K. Srivastva ◽  
R. K. Singhand Abid Mir

A total of 32 genotypes collected from different geographical areas evaluated at one site to determine the genetic variability. Considerable diversity was found in different traits of horticultural importance. Principal component analysis showed more than 84 % of total multivariate variation for important traits in different genotypes. Pod yield, pod length,10 pods weight and pods per plant were found to be major traits contributing towards principal component-I. Similarly, seeds per pod, secondary branches/plant, pod length were main positive contributing traits towards second component. Ten pod weight, pod width were positively contributing component towards principal component third. Pods per plant and shelling percentage were main traits contributing to principal component-IV, where as plant height, pod length and pod width were major positively contributing traits towards principal component -V. PS-1100, Meethi Phali, PB-87 and FC-1 were most divergent genotypes. On the basis of cluster mean of single linkage cluster analysis, Custer-I was best for number of primary branches and shelling percentage, Cluster -II for plant height,10 pods weight and pod yield per plant, cluster-III for number of pods /plants and cluster IV for pod length. Selection of genotypes from divergent clusters and components having more than one positive traits for hybridization programme may lead to improvement in yield and quality of pea.


Sign in / Sign up

Export Citation Format

Share Document