scholarly journals Physiological Features of Platelets in Milk and Vegetable Nutrition Piglets

2018 ◽  
Vol 11 (3) ◽  
pp. 1437-1442 ◽  
Author(s):  
Tkacheva E. S.

A very important mechanism for maintaining homeostasis in the animal body is platelet hemostasis. The level of his activity very strongly determines the rheology of blood in the capillaries and due to this the state of metabolism in the tissues. There is reason to believe that the growth and development of piglets depends on the level of functional activity of platelets. For this reason, studies of the age-related dynamics of platelet activity in piglets during early ontogeny are of great importance. In the study, it was established that piglets of milk and vegetal nutrition showed an increase in the adhesive, aggregation and secretory capacity of platelets. The main reason for this may be an intensification of the work of receptor and postreceptor mechanisms of platelets. This was characteristic of piglets during dairy and plant nutrition in the same degree with respect to strong and weak inducers of platelet aggregation. At the base of the revealed increase in the activity of platelets in piglets throughout the course of the observation, the increase in the synthesis of thromboxane in platelets was largely due to the increase in the activity of cyclooxygenase and thromboxane synthetase in them and activation of the secretion of ADP from them. The increase in hemostatic activity of platelets in piglets during the phase of milk and plant nutrition should be considered an important regulator of their microcirculation and metabolism in tissues under changing conditions of existence.

Author(s):  
S. Yu. Zavalishina ◽  
E. S. Tkacheva

A very important mechanism for maintaining homeostasis in the animal body is platelet hemostasis. The level of his activity very strongly determines the rheology of blood in the capillaries and due to this the state of metabolism in the tissues. There is reason to believe that the growth and development of piglets depends on the level of functional activity of platelets. For this reason, studies of the age-related dynamics of platelet activity in piglets at the end of early ontogenesis are of great importance. In the study, it was found that the piglets of plant nutrition showed an increase in the aggregation capacity of platelets (aggregation of their platelets was accelerated by ADP from 34.10.12 s to 27.60.12 s, with collagen from 24.70.08 s to 17.50.10 s, with thrombin from 36.50.08 s to 28.40.12 s). The main reason for this may be an intensification of the work of receptor and postreceptor mechanisms of platelets. This was characteristic of piglets during the phase of plant nutrition of early ontogenesis to the same extent with respect to strong and weak inducers of platelet aggregation. The increase in thromboxane synthesis in platelets (from 48.50.05% to 59.80.09%) was largely due to an increase in the activity of cyclooxygenase in them (from 78,40.06% to 89.80.12%) and thromboxane synthetase (from 69.20.07% to 81.50.07%) and activation of ADP secretion from them (from 46.00.13% to 56.90.15%). The increase in hemostatic activity of platelets in piglets during the phase of plant nutrition of early ontogeny should be considered an important regulator of their microcirculation and metabolism in tissues under existing conditions of existence.


2020 ◽  
Vol 17 ◽  
pp. 00171
Author(s):  
Svetlana Yu. Zavalishina

A functionally significant element in ensuring homeostasis of the internal environment of an animal organism is platelets. The state of their activity greatly influences the rheology of blood in small vessels and, thus, the metabolism in tissues. It becomes clear that the process of growth and development of piglets at any age substantially depends on the level of their activity. In this regard, the assessment of agerelated changes in platelet activity in piglets during their early ontogenesis is of great importance. In the work performed, it was found that in piglets during the dairy and vegetable nutrition phase there is an increase in the adhesive, aggregation and secretory properties of platelets. The leading cause of these changes can be the enhancement of receptor processes and activation of the work of post-receptor mechanisms of information transfer in platelets. This is noted in piglets during the milk-plant nutrition phase simultaneously for both strong and weak aggregation inducers. The growth of platelet activity in piglets found during the observation period apparently was due to the intensification of thromboxane generation in platelets as a result of the increased activity of their cyclooxygenase and thromboxane synthetase, as well as an increase in the secretion of ADP molecules from them. The increase in the severity of the hemostatic properties of platelets in piglets during the milk-plant nutrition phase seems to be a serious regulator of their microcirculation and metabolism processes in any environmental conditions.


2020 ◽  
Vol 17 ◽  
pp. 00167 ◽  
Author(s):  
Nadezhda V. Vorobyeva ◽  
Ilya N. Medvedev

Platelet activity in cattle can change under the influence of many factors. Their assessment in the second phase of their early ontogenesis is of great interest, taking into account the breed of calves. The purpose of the work is to evaluate platelet activity in black-and-white breed dairy calves. The study was conducted on 41 calf of black-motley breed, which was obtained from healthy cows as a result of 2–3 pregnancies. The calves were examined on the 11th, 15th, 20th, 25th and 30th day of ontogenesis. The study used biochemical, hematological and statistical methods. In animals, an increase in platelet aggregation with all tested inductors was detected during the milk feeding phase. The number of discoid platelets in the blood of calves observed during the second phase of early ontogenesis decreased by 10.5 %. Moreover, the total number of active platelets increased by 24.0 %. The levels of small, as well as medium and large aggregates of platelets present in the blood also increased during the milk feeding phase by 28.6 and 27.3 %, respectively. This was achieved in the observed calves by an increase of 9.6 % in the synthesis of thromboxane in platelets due to an increase in the activity of cyclooxygenase in them by 9.4 % and thromboxane synthetase by 9.3 %. This was also influenced by the increase in the platelet content of adenosine phosphates and the increase in their secretion. The levels of actin and myosin in inactive calf platelets increased during the milk feeding phase by 9.7 and 13.2 %, respectively. In animals, an increase in the additional generation of actin and myosin was revealed during platelet aggregation by 11.1 and 9.8 %, respectively. It is clear that calves of the black-motley breed of dairy food are characterized by a certain increase in the activity of platelet aggregation and secretion. This provides them with a high degree of preservation of blood volume in case of damage to blood vessels. The growth of intravascular platelet activity in these calves also contributes to the creation of the necessary conditions to minimize blood loss and ensure homeostasis.


1985 ◽  
Vol 54 (02) ◽  
pp. 431-437 ◽  
Author(s):  
M J Dembélé-Duchesne ◽  
A Laghchim Lahlou ◽  
H Thaler-Dao ◽  
A Crastes de Paulet

SummaryHuman placental cytosol inhibits platelet aggregation induced by high doses of collagen. The aim of this study was to investigate whether this anti-aggregating activity was caused only by the presence of various activities already described in the placenta (an ADP-consuming enzyme, a fatty acid cyclooxygenase inhibitor, and a thromboxane synthetase inhibitor) or whether another factor was present.Heating the cytosol at 50° C for 6 min destroyed the inhibitor of collagen-induced aggregation. ADPase and the AA pathway inhibitors were not modified by this treatment. We therefore show the presence of an additional anti-aggregating factor: it is destroyed by heating at 50° C.We also tested for the presence of an inhibitor of AA release in the placental cytosol using three different methods (rabbit platelets in PRP, washed rabbit platelets, and NRK fibroblasts) but no inhibition could be evidenced.We conclude that this new anti-aggregating factor, which is probably a protein, acts neither through AA release inhibition nor AA cascade inhibition.


Author(s):  
Mihir K Patel ◽  
Kiranj K. Chaudagar ◽  
Anita A. Mehta

Objective: Although recent advances in the treatment of congestive heart disease, mortality among patients’ remains a questionable remark. Therefore, we evaluated the role of capsaicin on in vitro and ex vivo platelet aggregation induced by Adenosine Di-Phosphate (ADP) as well as in in vivo thrombosis models and role of NO, KATP was also identified in the capsaicin-induced anti-platelet animal model as well as in vivo model of arterial thrombosis.Methods: According to body weight wistar rats were divided into five groups. Group I and Group II was treated with saline and capsaicin (3 mg/kg, i. v), while animals from Group III were treated with N(ω)-nitro-L-arginine methyl ester (L-NAME) (30 mg/kg, i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group IV animals were treated with glibenclamide (10 mg/kg,i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group V was considered as a positive control and administered clopidogrel (30 mg/kg, p. o). Animals were subjected for in vitro, ex-vivo platelet aggregation assay. ADP (30µM) was utilized as an aggregating agent in these experiments. After these assays; animals of each group were subjected for subaqueous tail bleeding time in a rat model and FeCl3-induced arterial thrombosis model in rats.Results: In ADP-induced in vitro platelet aggregation, a significant reduction in % platelet aggregation was observed at 50µM (64.35±4.641) and 100µM (52.72±4.192) concentration of capsaicin as compared to vehicle control (85.82±3.716). Capsaicin (3 mg/kg, i. v) also showed a significant reduction (49.53±4.075) in ex-vivo ADP-induced platelet aggregation as compared to vehicle control (89.38±2.057). In FeCl3 induced arterial thrombosis model, Capsaicin (3 mg/kg, i. v) exhibited an increase in time to occlusion in this rodent model and presence of the L-NAME and glibenclamide had inhibited the activity of capsaicin.Conclusion: In our study, capsaicin (50 µM, 100µM) exhibited potent anti-platelet activity in ADP-induced platelet aggregation, similarly capsaicin exhibited significant anti-platelet action in the ex-vivo study. Moreover, the presence of L-NAME and glibenclamide inhibited the anti-thrombotic and anti-platelet action of capsaicin. Therefore, it was concluded that NO and KATP may be involved in the anti-thrombotic action of capsaicin.


1981 ◽  
Author(s):  
M A Lazzari ◽  
M Gimeno ◽  
N M Sutton ◽  
J R Lopez

Diabetes Mellitus (DM) is a risk factor in the development of vasculopathies and its complications. It produces also its own microangiopathy. Evidence was reported of increased platelet activity in DM in different assays. Platelets aggregation and the arachidonic cycle could play a key role in the increased tendency to thrombosis. A disorder of ratio TXA2/PGI2, two opposing prostaglandin derivatives, could be the initial step. We intended to evaluate a thromboxane like substance (TLS) produced from platelet rich plasma (PRP) and to compare between normals and diabetic retinopathy (DR) patients. TLS was measured in 16 controls and 16 patients. Assay was done with the aggregating activity developed in PRP (considered TLS) after addition of arachidonic acid (f.c. 2 mM). The supernatant of the PRP (100 μl) was taken 40 sec. after the aggregation started and were added to a normal PRP treated with aspirin (f.c. 40 μl/ml) adjusted to 250.000 - 300.000 pl/μl and the degree of platelet aggregation measured in a Chrono Log Aggregometer. TLS was inactivated after its incubation during 2 min. at 37°C. This finding suggests this activity is due to TXA2.The results obtained (expressed in % of platelet aggregation) were: controls x 16.37% ± 6.28 and DR x 36.00% ± 9.72.The increase detected in the DR group supports previous experimental reports suggesting the role of the thromboxane A2 in vaso occlusive complication of diabetes mellitus.


2020 ◽  
Vol 319 (1) ◽  
pp. H133-H143 ◽  
Author(s):  
Haichen Lv ◽  
Ruopeng Tan ◽  
Jiawei Liao ◽  
Zhujing Hao ◽  
Xiaolei Yang ◽  
...  

Doxorubicin therapy in mice (antitumor dosage) markedly enhanced platelet functions measured as agonist-induced platelet aggregation, degranulation, and adhesion to endothelial cells, actions leading to thrombus formation and thrombosis-independent vascular injury. Clopidogrel treatment ameliorated thrombus formation and vascular toxicity induced by doxorubicin via inhibiting platelet activity.


1981 ◽  
Author(s):  
J B Knudsen ◽  
A Juhl ◽  
J Gormsen

A novel, specific Thromboxan A2-synthetase inhibitor 4-1-2- (1 H-imidazol-l-yl)ethoxy-benzoic acid hydrochloride was given to nine patients with hyperactive platelets (defined by an aggregation threshold 0.05 ug/ml epinepherine) and nine controls. The effects on serum Thromboxan B2, platelet aggregation, serotonin release, PF-4, and 6-keto-PGF1 were evaluated in sequential blood samples from h to 24 h after single dose of loo mg. The serum-thromboxan production measured by RIA was reduced 96% ± 4.3 sd 1/2 h to 2 h after dosing. Platelet+aggregation was reduced 89 ± lo.2% with epinephrine, 92 ± 11.4% with collagen and 56 ± 14.3% with ADP. Serotonin release induced by ADP was reduced 65 ± 9.8%, while PF-4 showed no consistant changes. When crushed rat aorta or microsome preparations from human umbilical cord arteries were incubated with PRP from patients before and after dosing, and aggregation induced by 16 uM ADP, a 6 fold increase in 6-keto PGF1α production measured by RIA was observed. The Ivy-bleeding time was prolonged by 65±14sd %.Conclusion: Specific inhibition of the platelet thromboxane synthetase in patients induces a highly effective inhibition of thromboxane production, and inhibition of platelet aggregability and serotonin release and an increase in Endoperoxide availability which by rat and human endothelial cell prostacycline synthetase can be utilized for increase prostacyclin production.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1760 ◽  
Author(s):  
Borkwei Ed Nignpense ◽  
Kenneth A Chinkwo ◽  
Christopher L Blanchard ◽  
Abishek B Santhakumar

Platelet hyper-activation and platelet microparticles (PMPs) play a key role in the pathogenesis of cardiovascular diseases. Dietary polyphenols are believed to mimic antiplatelet agents by blunting platelet activation receptors via its antioxidant phenomenon. However, there is limited information on the anti-platelet activity of grain-derived polyphenols. The aim of the study is to evaluate the effects of sorghum extract (Shawaya short black 1 variety), an extract previously characterised for its high antioxidant activity and reduction of oxidative stress-related endothelial dysfunction, on platelet aggregation, platelet activation and PMP release. Whole blood samples collected from 18 healthy volunteers were treated with varying non-cytotoxic concentrations of polyphenol-rich black sorghum extract (BSE). Platelet aggregation study utilised 5 µg/mL collagen to target the GPVI pathway of thrombus formation whereas adenine phosphate (ADP) was used to stimulate the P2Y1/P2Y12 pathway of platelet activation assessed by flow cytometry. Procaspase-activating compound 1 (PAC-1) and P-selectin/CD62P were used to evaluate platelet activation- related conformational changes and degranulation respectively. PMPs were isolated from unstimulated platelets and quantified by size distribution and binding to CD42b. BSE treatment significantly reduced both collagen-induced platelet aggregation and circulatory PMP release at 40 µg/mL (p < 0.001) when compared to control. However, there was no significant impact of BSE on ADP-induced activation-dependent conformational change and degranulation of platelets. Results of this study suggest that phenolic rich BSE may confer cardio-protection by modulating specific signalling pathways involved in platelet activation and PMP release.


Sign in / Sign up

Export Citation Format

Share Document