scholarly journals Platelet-derived extracellular vesicles promote osteoinduction of mesenchymal stromal cells

2020 ◽  
Vol 9 (10) ◽  
pp. 667-674
Author(s):  
Miquel Antich-Rosselló ◽  
Maria Antònia Forteza-Genestra ◽  
Javier Calvo ◽  
Antoni Gayà ◽  
Marta Monjo ◽  
...  

Aims Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration. In this article, we evaluate the effect of PL-derived EVs on the biocompatibility and differentiation of mesenchymal stromal cells (MSCs). Methods EVs were obtained first by ultracentrifugation (UC) and then by size exclusion chromatography (SEC) from non-activated PL. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and the expression of CD9 and CD63 markers by western blot. The effect of the obtained EVs on osteoinduction was evaluated in vitro on human umbilical cord MSCs by messenger RNA (mRNA) expression analysis of bone markers, alkaline phosphatase activity (ALP), and calcium (Ca2+) content. Results Osteogenic differentiation of MSCs was confirmed when treated with UC-isolated EVs. In order to disprove that the effect was due to co-isolated proteins, EVs were isolated by SEC. Purer EVs were obtained and proved to maintain the differentiation effect on MSCs and showed a dose-dependent response. Conclusion PL-derived EVs present an osteogenic capability comparable to PL treatments, emerging as an alternative able to overcome PL and PRP limitations. Cite this article: Bone Joint Res 2020;9(10):667–674.

2019 ◽  
Vol 130 (5) ◽  
pp. 778-790 ◽  
Author(s):  
Amir K. Varkouhi ◽  
Mirjana Jerkic ◽  
Lindsay Ormesher ◽  
Stéphane Gagnon ◽  
Sakshi Goyal ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Human umbilical cord mesenchymal stromal cells possess considerable therapeutic promise for acute respiratory distress syndrome. Umbilical cord mesenchymal stromal cells may exert therapeutic effects via extracellular vesicles, while priming umbilical cord mesenchymal stromal cells may further enhance their effect. The authors investigated whether interferon-γ–primed umbilical cord mesenchymal stromal cells would generate mesenchymal stromal cell–derived extracellular vesicles with enhanced effects in Escherichia coli (E. coli) pneumonia. Methods In a university laboratory, anesthetized adult male Sprague–Dawley rats (n = 8 to 18 per group) underwent intrapulmonary E. coli instillation (5 × 109 colony forming units per kilogram), and were randomized to receive (a) primed mesenchymal stromal cell–derived extracellular vesicles, (b) naïve mesenchymal stromal cell–derived extracellular vesicles (both 100 million mesenchymal stromal cell–derived extracellular vesicles per kilogram), or (c) vehicle. Injury severity and bacterial load were assessed at 48 h. In vitro studies assessed the potential for primed and naïve mesenchymal stromal cell–derived extracellular vesicles to enhance macrophage bacterial phagocytosis and killing. Results Survival increased with primed (10 of 11 [91%]) and naïve (8 of 8 [100%]) mesenchymal stromal cell–derived extracellular vesicles compared with vehicle (12 of 18 [66.7%], P = 0.038). Primed—but not naïve—mesenchymal stromal cell–derived extracellular vesicles reduced alveolar–arterial oxygen gradient (422 ± 104, 536 ± 58, 523 ± 68 mm Hg, respectively; P = 0.008), reduced alveolar protein leak (0.7 ± 0.3, 1.4 ± 0.4, 1.5 ± 0.7 mg/ml, respectively; P = 0.003), increased lung mononuclear phagocytes (23.2 ± 6.3, 21.7 ± 5, 16.7 ± 5 respectively; P = 0.025), and reduced alveolar tumor necrosis factor alpha concentrations (29 ± 14.5, 35 ± 12.3, 47.2 ± 6.3 pg/ml, respectively; P = 0.026) compared with vehicle. Primed—but not naïve—mesenchymal stromal cell–derived extracellular vesicles enhanced endothelial nitric oxide synthase production in the injured lung (endothelial nitric oxide synthase/β-actin = 0.77 ± 0.34, 0.25 ± 0.29, 0.21 ± 0.33, respectively; P = 0.005). Both primed and naïve mesenchymal stromal cell–derived extracellular vesicles enhanced E. coli phagocytosis and bacterial killing in human acute monocytic leukemia cell line (THP-1) in vitro (36.9 ± 4, 13.3 ± 8, 0.1 ± 0.01%, respectively; P = 0.0004) compared with vehicle. Conclusions Extracellular vesicles from interferon-γ–primed human umbilical cord mesenchymal stromal cells more effectively attenuated E. coli–induced lung injury compared with extracellular vesicles from naïve mesenchymal stromal cells, potentially via enhanced macrophage phagocytosis and killing of E. coli.


2021 ◽  
Vol 22 (13) ◽  
pp. 6837
Author(s):  
Pauline Rozier ◽  
Marie Maumus ◽  
Claire Bony ◽  
Alexandre Thibault Jacques Maria ◽  
Florence Sabatier ◽  
...  

Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Anton Selich ◽  
Katharina Zimmermann ◽  
Michel Tenspolde ◽  
Oliver Dittrich-Breiholz ◽  
Constantin von Kaisenberg ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are used in over 800 clinical trials mainly due to their immune inhibitory activity. Umbilical cord (UC), the second leading source of clinically used MSCs, is usually cut in small tissue pieces. Subsequent cultivation leads to a continuous outgrowth of MSC explant monolayers (MSC-EMs) for months. Currently, the first MSC-EM culture takes approximately 2 weeks to grow out, which is then expanded and applied to patients. The initiating tissue pieces are then discarded. However, when UC pieces are transferred to new culture dishes, MSC-EMs continue to grow out. In case the functional integrity of these cells is maintained, later induced cultures could also be expanded and used for cell therapy. This would drastically increase the number of available cells for each patient. To test the functionality of MSC-EMs from early and late induction time points, we compared the first cultures to those initiated after 2 months by investigating their clonality and immunomodulatory capacity. Methods We analyzed the clonal composition of MSC-EM cultures by umbilical cord piece transduction using integrating lentiviral vectors harboring genetic barcodes assessed by high-throughput sequencing. We investigated the transcriptome of these cultures by microarrays. Finally, the secretome was analyzed by multiplexed ELISAs, in vitro assays, and in vivo in mice. Results DNA barcode analysis showed polyclonal MSC-EMs even after months of induction cycles. A transcriptome and secretome analyses of early and late MSC cultures showed only minor changes over time. However, upon activation with TNF-α and IFN-γ, cells from both induction time points produced a multitude of immunomodulatory cytokines. Interestingly, the later induced MSC-EMs produced higher amounts of cytokines. To test whether the different cytokine levels were in a therapeutically relevant range, we used conditioned medium (CM) in an in vitro MLR and an in vivo killing assay. CM from late induced MSC-EMs was at least as immune inhibitory as CM from early induced MSC-EMs. Conclusion Human umbilical cord maintains a microenvironment for the long-term induction of polyclonal and immune inhibitory active MSCs for months. Thus, our results would offer the possibility to drastically increase the number of therapeutically applicable MSCs for a substantial amount of patients.


2020 ◽  
Vol 29 ◽  
pp. 096368972094567
Author(s):  
Changyi Zhang ◽  
Hongwu Wang ◽  
Godfrey C.F. Chan ◽  
Yu Zhou ◽  
Xiulan Lai ◽  
...  

Endoplasmic reticulum (ER) stress is implicated in the pathogenesis of many diseases, including myocardial ischemia/reperfusion injury. We hypothesized that human umbilical cord mesenchymal stromal cells derived extracellular vesicles (HuMSC-EVs) could protect cardiac cells against hyperactive ER stress induced by hypoxia/reoxygenation (H/R) injury. The H/R model was generated using the H9c2 cultured cardiac cell line. HuMSC-EVs were extracted using a commercially available exosome isolation reagent. Levels of apoptosis-related signaling molecules and the degree of ER stress were assessed by western blot. The role of the PI3K/Akt pathway was investigated using signaling inhibitors. Lactate dehydrogenase leakage and 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) analysis were used for evaluating the therapeutic effects of HuMSC-EVs in vitro. The results showed that ER stress and the rate of apoptosis were increased in the context of H/R injury. Treatment with HuMSC-EVs inhibited ER stress and increased survival in H9c2 cells exposed to H/R. Mechanistically, the PI3K/Akt pathway was activated by treatment with HuMSC-EVs after H/R. Inhibition of the PI3K/Akt pathway by a specific inhibitor, LY294002, partially reduced the protective effect of HuMSC-EVs. Our findings suggest that HuMSC-EVs could alleviate ER stress–induced apoptosis during H/R via activation of the PI3K/Akt pathway.


2019 ◽  
Vol 15 (6) ◽  
pp. 900-918 ◽  
Author(s):  
Tiziana Corsello ◽  
Giandomenico Amico ◽  
Simona Corrao ◽  
Rita Anzalone ◽  
Francesca Timoneri ◽  
...  

Author(s):  
Rafael Sánchez-Sánchez ◽  
Marta Gómez-Ferrer ◽  
Ignacio Reinal ◽  
Marc Buigues ◽  
Estela Villanueva-Bádenas ◽  
...  

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are an emerging alternative to cell-based therapies to treat many diseases. However, the complexity of producing homogeneous populations of EVs in sufficient amount hampers their clinical use. To address these limitations, we immortalized dental pulp-derived MSC using a human telomerase lentiviral vector and investigated the cardioprotective potential of a hypoxia-regulated EV-derived cargo microRNA, miR-4732-3p. We tested the compared the capacity of a synthetic miR-4732-3p mimic with EVs to confer protection to cardiomyocytes, fibroblasts and endothelial cells against oxygen-glucose deprivation (OGD). Results showed that OGD-induced cardiomyocytes treated with either EVs or miR-4732-3p showed prolonged spontaneous beating, lowered ROS levels, and less apoptosis. Transfection of the miR-4732-3p mimic was more effective than EVs in stimulating angiogenesis in vitro and in vivo and in reducing fibroblast differentiation upon transforming growth factor beta treatment. Finally, the miR-4732-3p mimic reduced scar tissue and preserved cardiac function when transplanted intramyocardially in infarcted nude rats. Overall, these results indicate that miR-4732-3p is regulated by hypoxia and exerts cardioprotective actions against ischemic insult, with potential application in cell-free-based therapeutic strategies.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yu-Hsun Chang ◽  
Dah-Ching Ding ◽  
Kun-Chi Wu

Osteoarthritis (OA), the most common type of arthritis, causes pain in joints and disability. Due to the absence of ideal effective medication, stem cell transplantation emerges as a new hope for OA therapy. This study is aimed at evaluating the capability of human umbilical cord mesenchymal stromal cells (HUCMSCs) mixed with hyaluronan (HA) to treat osteoarthritis in a rabbit model. Differentiation capability of HUCMSCs, magnetic resonance image examination, and immunohistochemistry of the cartilage after transplantation of HUCMSCs mixed with HA in a rabbit OA model were explored. HUCMSCs exhibited typical mesenchymal stromal cell (MSC) characteristics, including spindle-shaped morphology, surface marker expressions (positive for human leukocyte antigen- (HLA-) ABC, CD44, CD73, CD90, and CD105; negative for HLA-DR, CD34, and CD45), and trilineage differentiation (chondrogenesis, adipogenesis, and osteogenesis). The gene expression of SOX9, type II collagen, and aggrecan in the HUCMSC-derived chondrocytes mixed with HA was increased after in vitro chondrogenesis compared with HUCMSCs. A gross and histological significant improvement in hyaline cartilage destruction after HUCMSCs mixed with HA was noted in the animal model compared to the OA knees. The International Cartilage Repair Society histological score and Safranin O staining were significantly higher for the treated knees than the control knees ( p < 0.05 ). Moreover, the expression of MMP13 was significantly decreased in the treated knees than in the OA knees. In conclusion, HUCMSCs mixed with HA in vitro and in vivo might attenuate the cartilage destruction in osteoarthritis. Our study provided evidence for future clinical trials.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 734
Author(s):  
Leonardo Mortati ◽  
Laura de Girolamo ◽  
Carlotta Perucca Orfei ◽  
Marco Viganò ◽  
Marco Brayda-Bruno ◽  
...  

Mesenchymal stromal cells (MSCs)-derived extracellular vesicles (EVs) are promising therapeutic nano-carriers for the treatment of osteoarthritis (OA). The assessment of their uptake in tissues is mandatory but, to date, available technology does not allow to track and quantify incorporation in real-time. To fill this knowledge gap, the present study was intended to develop an innovative technology to determine kinetics of fluorescent MSC-EV uptake by means of time-lapse quantitative microscopy techniques. Adipose-derived mesenchymal stromal cells (ASCs)-EVs were fluorescently labeled and tracked during their uptake into chondrocytes micromasses or cartilage explants, both derived from OA patients. Immunofluorescence and time-lapse coherent anti-Stokes Raman scattering, second harmonic generation and two-photon excited fluorescence were used to follow and quantify incorporation. EVs penetration appeared quickly after few minutes and reached 30–40 μm depth after 5 h in both explants and micromasses. In explants, uptake was slightly faster, with EVs signal overlapping both extracellular matrix and chondrocytes, whereas in micromasses a more homogenous diffusion was observed. The finding of this study demonstrates that this innovative technology is a powerful tool to monitor EVs migration in tissues characterized by a complex extracellular network, and to obtain data resembling in vivo conditions.


Author(s):  
Shalmali Pendse ◽  
Vaijayanti Kale ◽  
Anuradha Vaidya

: Mesenchymal stromal cells (MSCs) regulate other cell types through a strong paracrine component called the secretome, comprising of several bioactive entities. The composition of the MSCs’ secretome is dependent upon the microenvironment in which they thrive, and hence, it could be altered by pre-conditioning the MSCs during in vitro culture. The primary aim of this review is to discuss various strategies that are being used for pre-conditioning of MSCs, also known as “priming of MSCs”, in the context of improving their therapeutic potential. Several studies have underscored the importance of extracellular vesicles (EVs) derived from primed MSCs in improving their efficacy in the treatment of various diseases. We have previously shown that co-culturing hematopoietic stem cells (HSCs) with hypoxiaprimed MSCs improves their engraftment potential. Now the question we pose is would priming of MSCs with hypoxiafavorably alter theirsecretome and would this altered secretome work as effectively as the cell to cell contact did? Here we review the current strategies of using the secretome, specifically the EVs (microvesicles and exosomes), collected from the primed MSCs with the intention of expanding HSCs ex vivo. We speculate that an effective priming of MSCs in vitrocould modulate the molecular profile of their secretome, which could eventually be used as a cell-free biologic in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document