Tillage Effects on Drainage Fluxes and Nitrate Leaching through Unsaturated Zone under Irrigated Corn-Soybean Rotation

2019 ◽  
Vol 35 (3) ◽  
pp. 293-300 ◽  
Author(s):  
J. D. Jabro ◽  
W. M. Iversen ◽  
W. B. Stevens ◽  
U. M. Sainju ◽  
B. L. Allen

Abstract. High levels of nitrate-nitrogen (NO3-N) in the nation’s groundwater are a significant environmental concern. To date no studies have yet evaluated the effects of various tillage practices on percolated drainage and NO3-N fluxes below the rootzone of cropping systems in the northern Great Plains. A field study was conducted to examine and compare the effect of no-tillage (NT) and conventional tillage (CT) practices on seasonal drainage fluxes and NO3-N leaching losses below the rootzone in irrigated corn ( L.) and soybean ( L.) on a Lihen sandy loam soil. Sixteen passive capillary lysimeters, PCAPs (75 cm long polyvinyl chloride pipe with a collecting surface area of 0.1 m2) were placed 90 cm below the soil surface to quantify percolated drainage water below the rootzone of corn-soybean rotation under NT and CT practices. The study was designed as a randomized complete block with four replications. Drainage and NO3-N fluxes were not significantly affected by the tillage in 2014, 2015, 2016, and 2017 due to substantial spatial variations among lysimeters within each treatment. Average cumulative seasonal drainage depths across 4 years were 22.26 and 34.46 mm for corn and 24.95 and 28.16 mm for soybean under NT and CT, respectively. Averaged 4-yr cumulative NO3-N losses were 17.61 and 26.74 kg ha-1 for corn and 25.47 and 23.56 kg ha-1 for soybean under NT and CT, respectively. Flow-weighted NO3-N concentrations over 4 years were 57.9 and 65.7 mg L-1 for corn while those for soybean were 74.8 and 67.0 mg L-1 under NT and CT, respectively. Nitrate-nitrogen concentrations generally exceed the safe drinking water standard of 10 mg L-1. Reducing N inputs in well-drained soils and using site specific N and irrigation management practices are required to lower input expenses, reduce N leaching losses and sustain environmental quality. Keywords: Drainage, Fluxes, Leaching, Lysimeter, Nitrate-nitrogen, Rootzone, Tillage.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. W. McDowell ◽  
Z. P. Simpson ◽  
A. G. Ausseil ◽  
Z. Etheridge ◽  
R. Law

AbstractUnderstanding the lag time between land management and impacts on riverine nitrate–nitrogen (N) loads is critical to understand when action to mitigate nitrate–N leaching losses from the soil profile may start improving water quality. These lags occur due to leaching of nitrate–N through the subsurface (soil and groundwater). Actions to mitigate nitrate–N losses have been mandated in New Zealand policy to start showing improvements in water quality within five years. We estimated annual rates of nitrate–N leaching and annual nitrate–N loads for 77 river catchments from 1990 to 2018. Lag times between these losses and riverine loads were determined for 34 catchments but could not be determined in other catchments because they exhibited little change in nitrate–N leaching losses or loads. Lag times varied from 1 to 12 years according to factors like catchment size (Strahler stream order and altitude) and slope. For eight catchments where additional isotope and modelling data were available, the mean transit time for surface water at baseflow to pass through the catchment was on average 2.1 years less than, and never greater than, the mean lag time for nitrate–N, inferring our lag time estimates were robust. The median lag time for nitrate–N across the 34 catchments was 4.5 years, meaning that nearly half of these catchments wouldn’t exhibit decreases in nitrate–N because of practice change within the five years outlined in policy.


2006 ◽  
Vol 15 (2) ◽  
pp. 369-420 ◽  
Author(s):  
A. K. Alva ◽  
S. Paramasivam ◽  
A. Fares ◽  
J. A. Delgado ◽  
D. Mattos ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 10-16 ◽  
Author(s):  
James L. Baker

The primary mode of nitrogen (N) loss from tile-drained row-cropped land is generally nitrate-nitrogen (NO3-N) leaching. Although cropping, tillage, and N management practices can be altered to reduce the amount of leaching, there are limits as to how much can be done. Data are given to illustrate the potential reductions for individual practices such as rate, method, and timing of N applications. However, most effects are multiplicative and not additive; thus it is probably not realistic to hope to get overall reductions greater than 25 to 30% with in-field practices alone. If this level of reduction is insufficient to meet water quality goals, additional off-site landscape modifications may be necessary.


Author(s):  
R.M. Monaghan ◽  
R.J. Paton ◽  
L.C. Smith ◽  
C. Binet

In response to local concerns about the expanding Southland dairy herd, a 4-year study was initiated in 1995 with the primary objective of quantifying nitrate-N losses to waterways from intensively grazed cattle pastures. Treatments were annual N fertiliser inputs of 0, 100, 200 or 400 kg N/ha. Stocking rate was set according to the pasture production on each of these four treatments, and over the 4 years of study ranged between the equivalent of 2.0 cows/ha for the 0N treatment, to 3.0 cows/ha for the treatment receiving 400 kg N/ ha/year. Mean annual losses of nitrate-N in drainage were 30, 34, 46 and 56 kg N/ha for the 0, 100, 200 and 400 kg N/ha/year treatments, respectively. Corresponding mean nitrate-N concentrations in drainage waters were 8.3, 9.2, 12.5 and 15.4 mg/ l, respectively. Very little direct leaching of fertiliser N was observed, even for drainage events in early spring, shortly after urea fertiliser application. The increased nitrate-N losses at higher rates of N fertiliser addition were instead owing to the indirect effect of increasing returns of urine and dung N to pasture. In Years 2 and 3, leaching losses of Ca, Mg, K, Na and sulphate-S averaged 61, 9, 11, 28 and 17 kg/ha/year, respectively, in the 0N fertiliser treatment. Increasing fertiliser N inputs significantly increased calcium and, to a lesser extent, potassium leaching losses but had no effect on losses of other plant nutrients. Surface runoff losses of Total-P, nitrate-N and ammonium- N were less than 0.5 kg/ha/year. For this well-drained Fleming soil, surface runoff was a relatively minor contributor of N to surface water, even for plots receiving high rates of fertiliser N and at a stocking rate of 3.0 cows/ha. Extrapolating these results to a 'typical' dairy pasture in Eastern Southland would suggest that the safe upper limit for annual fertiliser N additions to this site to achieve nitrate in drainage water below the drinking water standard is approximately 170 kg N/ha. Although losses of Ca in drainage were large, returns of this nutrient in maintenance applications of superphosphate-based products and lime should ensure Ca deficiencies are avoided in Southland dairy pastures. Keywords: cation-anion balances, dairy, N fertiliser, nitrate leaching, surface runoff, Southland


EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
George Hochmuth ◽  
Laurie Trenholm ◽  
Esen Momol ◽  
Don Rainey ◽  
Claire Lewis ◽  
...  

This publication discusses the “blue dye” test, which is one way that Extension professionals can show homeowners how water and nutrients move through the soil following irrigation. The information should be useful for county agents to demonstrate basic irrigation and nitrogen management practices and their effects on nitrate-nitrogen (N) leaching. This 4-page fact sheet was written by George Hochmuth, Laurie Trenholm, Esen Momol, Don Rainey, Claire Lewis, and Brian Niemann, and published by the UF Department of Soil and Water Science, November 2013. http://edis.ifas.ufl.edu/ss594


Author(s):  
R.W. Mcdowell ◽  
D.J. Houlbrooke

Dicyandiamide (DCD) is an effective mitigation option for decreasing nitrate-nitrogen (NO3-N) losses in drainage water from New Zealand pastures. This study determined the relative effect of DCD on decreasing NO3-N losses from simulated sheep or cattle urine patches applied to a winter forage crop. Lysimeters were collected from a site in North Otago (Mottled Fragic Pallic Timaru silt loam). Keywords: drainage, lysimeters, urine, nitrate, dicyandiamide, winter forage cropping


Author(s):  
K.C. Cameron ◽  
H.J. Di ◽  
J.L. Moir ◽  
A.H.C. Roberts

The decline in water quality in Lake Taupo has been attributed to nitrogen (N) leaching from surrounding land areas. Pastoral agriculture has been identified as a significant contributor to this N transfer to the lake through animal urine deposition. There is therefore an immediate need for new management options to reduce N losses. The objective of this study was to measure the effectiveness of using a nitrification inhibitor (eco-n) to reduce nitrate leaching losses from a pasture soil of the Taupo region. A 3-year study was conducted using 20 lysimeters on Landcorp's 'Waihora' sheep and beef farm, within 10 km of Lake Taupo. The results show that animal urine patches were the main source of nitrate leaching (>95% of the total annual loss) and that eco-n significantly (P


2009 ◽  
Vol 49 (3) ◽  
pp. 253 ◽  
Author(s):  
Jagrati Singh ◽  
S. Saggar ◽  
N. S. Bolan

In New Zealand, urine deposited by grazing animals represents the largest source of nitrogen (N) losses, as gaseous emissions of ammonia (NH3) and nitrous oxide (N2O), and leaching of nitrate (NO3−).We determined the effect of dicyandiamide (DCD) on gaseous emissions from pasture with increasing rates of urine-N application, mineral N transformations and potential leaching of N using undisturbed soil cores of Manawatu sandy loam at field capacity. The treatments included four levels of urine-N applied at 0 (control), 14.4, 29.0 and 57.0 g N/m2 with and without DCD at 2.5 g/m2. Results showed a significant (P < 0.05) increase in NH3 and N2O-N emissions as urine application was increased. The addition of DCD to corresponding urine treatments reduced N2O emissions by 33, 56 and 80%, respectively. The addition of DCD with urine to the intact soil cores at field capacity moisture content resulted in a significant increase in the soil ammonium-N (NH4+-N) concentration but little change in NH3 emissions. Addition of DCD to urine reduced potential NO3−-N leaching by 60–65% but potential NH4+-N leaching increased by 2–3.5 times. There was no difference in pasture dry matter production with and without DCD treatments.


2018 ◽  
Vol 61 (1) ◽  
pp. 233-244 ◽  
Author(s):  
Chad A. Poole ◽  
R. Wayne Skaggs ◽  
Mohamed A. Youssef ◽  
George M. Chescheir ◽  
Carl R. Crozier

Abstract. Short-term studies have demonstrated that drainage water management (DWM), or controlled drainage (CD), can be used to substantially reduce the loss of nitrogen (N) from drained lands for a wide range of soils, crops, locations, and climates. Long-term studies on the effects of the practice are limited. This article presents results on the effects of CD on nitrate-N (NO3-N) losses for three crops, corn ( L.), wheat ( L.), and soybean ( [L.] Merr.), in a two-year rotation in North Carolina. Nitrate losses were measured on replicated plots under CD and conventional, or free drainage (FD), treatments for nine years between 1992 and 2012 on a tile-drained site near Plymouth, North Carolina. The site is on a Portsmouth sandy loam soil with parallel drains 22.9 m apart and 1.15 m deep. The subsurface drainage characteristics under FD were drainage intensity (DI) = 8 mm d-1, drainage coefficient (DC) = 14 mm d-1, and Kirkham coefficient (KC) = 18 mm d-1. Compared to FD, CD reduced annual drainage outflow by 33% and NO3-N export by 30%, with an average annual reduction of 6.3 kg ha-1 year-1. CD increased average NO3-N concentrations by 0.9 mg L-1, but the difference was not significant. The reduction in NO3-N export observed in the CD treatment was equal to the increase in N removed by the harvested grain. The results document the effects of CD on NO3-N export over a wide range of weather conditions during the nine-year study. While the average 30% reduction in NO3-N losses in drainage water is in the midrange of that reported by previous studies for different soils and climates, this is believed to be the first time such a reduction has been attributed to the effect of CD on increasing yields and N removed in the harvested grain. Keywords: Controlled drainage (CD), Corn, Drainage water, Drainage water management (DWM), Nitrate, Nitrogen, Soybean, Water quality, Wheat.


Author(s):  
J.M. Chrystal ◽  
R.M.Monaghan D. Dalley ◽  
T. Styles

The expansion of the southern dairy herd in New Zealand has raised a number of concerns about the sustainability of grazing brassica forage crops. Here we provide an assessment of the contribution of these crops to the potential for N losses to water at a wholefarm system level, and compare these with metrics derived for systems that use alternative approaches for wintering cows. The risks of nutrient losses to water from six Monitor Farms that use contrasting approaches to dairy cow wintering were assessed using the Overseer® Nutrient budgets model (Overseer). This modelling assessment was supplemented with detailed information about the management of effluent generated from off-paddock cow wintering facilities such as wintering pads and covered housing. Predictions of N losses from individual farm blocks indicated that both winter- and summer-grazed brassica forage crops have a relatively high potential for N leaching losses. Expressed at a whole-system level (i.e. accounting for the milking platform, winter forage crop and other support land), the winter forage crops accounted for between 11 and 24% of total N leaching losses, despite representing only 4 to 9% of the area. The high N leaching losses predicted for summer-grazed forage crops were attributed to the limited opportunity for N uptake of excreted urinary N by the following new pasture. Another risk identified for some farms was the current practice of applying effluents collected from off-paddock facilities to land during winter. These assessments suggest that off-paddock cow wintering systems can help to minimise N losses from farms to water, although the storage and safe return to land of effluents and manures generated from the housing facilities is essential if this potential benefit is to be realised. Our assessments also suggest that summer crop paddocks have a relatively high potential for N leaching losses, although further research is needed to confirm this. Keywords: dairy cow wintering, Southland, nitrate leaching, grazed brassica forage crops.


Sign in / Sign up

Export Citation Format

Share Document