Liquid N and S Fertilizer Solutions Effects on the Mass, Chemical, and Shear Strength Properties of Winter Wheat (Triticum aestivum) Residue

2017 ◽  
Vol 60 (3) ◽  
pp. 671-682
Author(s):  
Yuxin He ◽  
DeAnn R. Presley ◽  
John Tatarko

Abstract. To improve stand establishment in high crop residue situations, the utility of fertilizer to stimulate microbial decomposition of residue has been debated. Field experiments assessed winter wheat () straw decomposition under different fertilizer rates and application timings at three sites in western Kansas following wheat harvest in 2011 and 2012. Treatments included urea ammonium nitrate (UAN) applied at rates of 0, 22.4, 44.8, or 67.2 kg N ha-1 and ammonium thiosulfate (ATS) applied at rates of 16.8 or 33.6 kg S ha-1. Residue was collected and characterized for physical and chemical parameters. A double shear box apparatus instrumented with a load cell measured the energy required to cut wheat straw. Photomicrography and image analysis software were used to measure the cross-sectional area of each individual wheat straw after shearing, and these data were used to calculate shear stress and specific energy parameters. Total C and N contents were measured for bulk wheat straw samples from each plot. Some differences among treatments or timing of application were observed for each of the measured parameters. However, the results were inconsistent, and few sampling periods had significant differences in wheat straw decomposition indicators as compared to the no-fertilizer control. For example, fertilizer rate and timing of application during summer 2012 and fall 2013 at the Hays site had impacts on wheat straw shear stress at the break point. Across site years, earlier (fall) fertilizer application generally resulted in lower remaining residue mass as compared to spring application. However, there were no differences when compared to the no-fertilizer control. Multivariate and linear regressions suggested that N content and C:N ratio could explain the results observed with respect to treatment effects on winter wheat residue decomposition. Keywords: Liquid fertilizer, Residue decomposition, Shear stress, Specific energy.

Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 83
Author(s):  
Gabriela Mühlbachová ◽  
Pavel Růžek ◽  
Helena Kusá ◽  
Radek Vavera ◽  
Martin Káš

The climate changes and increased drought frequency still more frequent in recent periods bring challenges to management with wheat straw remaining in the field after harvest and to its decomposition. The field experiment carried out in 2017–2019 in the Czech Republic aimed to evaluate winter wheat straw decomposition under different organic and mineral nitrogen fertilizing (urea, pig slurry and digestate with and without inhibitors of nitrification (IN)). Treatment Straw 1 with fertilizers was incorporated in soil each year the first day of experiment. The Straw 2 was placed on soil surface at the same day as Straw 1 and incorporated together with fertilizers after 3 weeks. The Straw 1 decomposition in N treatments varied between 25.8–40.1% and in controls between 21.5–33.1% in 2017–2019. The Straw 2 decomposition varied between 26.3–51.3% in N treatments and in controls between 22.4–40.6%. Higher straw decomposition in 2019 was related to more rainy weather. The drought observed mainly in 2018 led to the decrease of straw decomposition and to the highest contents of residual mineral nitrogen in soils. The limited efficiency of N fertilisers on straw decomposition under drought showed a necessity of revision of current strategy of N treatments and reduction of N doses adequately according the actual weather conditions.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Nolissa D. Organo ◽  
Shaira Mhel Joy M. Granada ◽  
Honey Grace S. Pineda ◽  
Joseph M. Sandro ◽  
Van Hung Nguyen ◽  
...  

AbstractThe potential for a Trichoderma-based compost activator was tested for in-situ rice straw decomposition, under both laboratory and field conditions. Inoculation of Trichoderma caused a 50% reduction in the indigenous fungal population after 2 weeks of incubation for both laboratory and field experiments. However, the Trichoderma population declined during the latter part of the incubation. Despite the significant reduction in fungal population during the first 2 weeks of incubation, inoculated samples were found to have higher indigenous and total fungal population at the end of the experiments with as much as a 300% increase in the laboratory experiment and 50% during day-21 and day-28 samplings in the field experiment. The laboratory incubation experiment revealed that inoculated samples released an average of 16% higher amounts of CO2 compared to uninoculated straw in sterile soil samples. Unsterile soil inoculated with Trichoderma released the highest amount of CO2 in the laboratory experiment. In the field experiment, improved decomposition was observed in samples inoculated with Trichoderma and placed below ground (WTBG). From the initial value of around 35%, the C content in WTBG was down to 28.63% after 42 days of incubation and was the lowest among treatments. This is significantly lower compared with NTBG (No Trichoderma placed below ground, 31.1% C), WTSS (With Trichoderma placed on soil surface, 33.83% C), and NTSS (No Trichoderma placed on soil surface, 34.30% carbon). The WTBG treatment also had the highest N content of 1.1%. The C:N ratio of WTBG was only 26.27, 39.51% lower than the C:N ratio of NTBG, which is 43.43. These results prove that the Trichoderma-based inoculant has the potential to hasten the decomposition of incorporated rice straw.


2018 ◽  
Vol 84 (12) ◽  
pp. 68-72
Author(s):  
A. B. Maksimov ◽  
I. P. Shevchenko ◽  
I. S. Erokhina

A method for separating the work of impact into two parts - the work of the crack nucleation and that of crack growth - which consists in testing two samples with the same stress concentrators and different cross-sectional dimensions at the notch site is developed. It is assumed that the work of crack nucleation is proportional to the width of the sample face on which the crack originates and the specific energy of crack formation, whereas the work of the crack growth is proportional to the length of crack development and the specific crack growth energy. In case of the sample fracture upon testing, the crack growth length is assumed equal to the sample width. Data on the work of fracture of two samples and their geometrical dimensions at the site of the notch are used to form a system of two linear equations in two unknowns, i.e., the specific energy of crack formation and specific energy of crack growth. The determined specific energy values are then used to calculate the work of crack nucleation and work of crack growth. The use of the analytical method improves the accuracy compared to graphical - extrapolative procedures. The novelty of the method consists in using one and the same form of the notch in test samples, thus providing the same conditions of the stress-strain state for crack nucleation and growth. Moreover, specimens with different cross-section dimensions are used to eliminate the scale effects. Since the specific energy of the crack nu-cleation and specific energy of the crack growth are independent of the scale factor, they are determined only by the properties of the metal. Introduction the specific energy of crack formation and growth makes possible to assign a specific physical meaning to the fracture energy.


2020 ◽  
Vol 3 (9) ◽  
pp. 231-233
Author(s):  
AliyevSh.K. ◽  
TuychiyevI.U ◽  
Karimov N ◽  
Umaraliev.M.I

The article is focused on the data of the carried works on studying biological efficiency of fungi Triazole 50% on sowing the winter wheat against yellow rust as well as on the height, development and fertility of the wheat. On May 5, 2019 from 9 to 10 o’clock under the temperature 21-23 field experiments of Triazol 50% CS manufactured by the firm “Agroximstar” (Uzbekistan) were carried out on winter wheat as a protector of seeds of winter wheat of Pervitsa sort against the disease of yellow rustin the irrigated conditions in an experimental field of the Institute “Istiklal” of Andijan district of Andijan region. The aim of the given research is to study biological-farming efficiency and determination of optimal norms of preparation expenses and to study the influence of fungicide on the height and development as well as on the fertility of the wheat. The received data showed that the preparation Triazole 50% CS effected on the pathogen of yellow rust favorably and besides that it didn’t effect on seed growth and energy of growth negatively.


2011 ◽  
Vol 48 (No. 1) ◽  
pp. 20-26
Author(s):  
M. Birkás ◽  
T. Szalai ◽  
C. Gyuricza ◽  
M. Gecse ◽  
K. Bordás

This research was instigated by the fact that during the last decade annually repeated shallow disk tillage on the same field became frequent practice in Hungary. In order to study the changes of soil condition associated with disk tillage and to assess it is consequences, long-term tillage field experiments with different levels of nutrients were set up in 1991 (A) and in 1994 (B) on Chromic Luvisol at Gödöllö. The effects of disk tillage (D) and disk tillage combined with loosening (LD) on soil condition, on yield of maize and winter wheat, and on weed infestation were examined. The evaluation of soil condition measured by cone index and bulk density indicated that use of disking annually resulted in a dense soil layer below the disking depth (diskpan-compaction). It was found, that soil condition deteriorated by diskpan-compaction decreased the yield of maize significantly by 20 and 42% (w/w), and that of wheat by 13 and 15% (w/w) when compared to soils with no diskpan-compaction. Averaged over seven years, and three fertilizer levels, the cover % of the total, grass and perennial weeds on loosened soils were 73, 69 and 65% of soils contained diskpan-compaction.


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


2021 ◽  
Vol 126 ◽  
pp. 126263
Author(s):  
Mario Fontana ◽  
Gilles Bélanger ◽  
Juliane Hirte ◽  
Noura Ziadi ◽  
Saïd Elfouki ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 554-560 ◽  
Author(s):  
Stephen N. Wegulo ◽  
William W. Bockus ◽  
John Hernandez Nopsa ◽  
Erick D. De Wolf ◽  
Kent M. Eskridge ◽  
...  

Fusarium head blight (FHB) or scab, incited by Fusarium graminearum, can cause significant economic losses in small grain production. Five field experiments were conducted from 2007 to 2009 to determine the effects on FHB and the associated mycotoxin deoxynivalenol (DON) of integrating winter wheat cultivar resistance and fungicide application. Other variables measured were yield and the percentage of Fusarium-damaged kernels (FDK). The fungicides prothioconazole + tebuconazole (formulated as Prosaro 421 SC) were applied at the rate of 0.475 liters/ha, or not applied, to three cultivars (experiments 1 to 3) or six cultivars (experiments 4 and 5) differing in their levels of resistance to FHB and DON accumulation. The effect of cultivar on FHB index was highly significant (P < 0.0001) in all five experiments. Under the highest FHB intensity and no fungicide application, the moderately resistant cultivars Harry, Heyne, Roane, and Truman had less severe FHB than the susceptible cultivars 2137, Jagalene, Overley, and Tomahawk (indices of 30 to 46% and 78 to 99%, respectively). Percent fungicide efficacy in reducing index and DON was greater in moderately resistant than in susceptible cultivars. Yield was negatively correlated with index, with FDK, and with DON, whereas index was positively correlated with FDK and with DON, and FDK and DON were positively correlated. Correlation between index and DON, index and FDK, and FDK and DON was stronger in susceptible than in moderately resistant cultivars, whereas the negative correlation between yield and FDK and yield and DON was stronger in moderately resistant than in susceptible cultivars. Overall, the strongest correlation was between index and DON (0.74 ≤ R ≤ 0.88, P ≤ 0.05). The results from this study indicate that fungicide efficacy in reducing FHB and DON was greater in moderately resistant cultivars than in susceptible ones. This shows that integrating cultivar resistance with fungicide application can be an effective strategy for management of FHB and DON in winter wheat.


1964 ◽  
Vol 62 (3) ◽  
pp. 377-379 ◽  
Author(s):  
J. R. Devine ◽  
M. R. J. Holmes

Ammonium nitrate and ammonium sulphate wore compared as top-dressing applications in thirty-six field experiments on winter wheat and eighty-nine on grassland in various parts of Great Britain in 1956-62. The rates of application were 35-60 lb./acre of nitrogen for winter wheat and 30-100 lb./acre for grassland in one application only.


Sign in / Sign up

Export Citation Format

Share Document