scholarly journals The Isolation and identification of cellulolytic bacteria at fibric, hemic and sapric peat in Teluk Bakung Peatland, Kubu Raya District, Indonesia

2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Siti Khotimah ◽  
Suharjono Suharjono ◽  
Tri Ardyati ◽  
Yulia Nuraini

Abstract. Khotimah S, Suharjono, Ardyati T, Nurani Y. 2020. Isolation and identification of cellulolytic bacteria at fibric, hemic, and sapric peat in Teluk Bakung Peatland, Kubu Raya District, Indonesia. Biodiversitas 21: 2103-2112. Cellulose degrading bacteria was one of the microbial removers of organic matter contained in the soil into simpler monomers so that it can be utilized by other organisms. The objective of the research was to obtain cellulose-degrading bacteria found on fibric, hemic, and sapric peat in forest and shrubs (oil palm). The bacteria were isolated by pour plate method on 1% CMC media. Selected isolates were assayed quantitatively based on the activity of cellulase enzyme, identified with 16S rDNA. The density of cellulolytic bacteria in the secondary forest peat of fibric, hemic, sapric were 2.1x103 cfu/g, 5.9x104 cfu/g, and 4.9x104 cfu/g whereas, in the area of shrubs/oil palm peat fibric, hemic and sapric 6.9x104 cfu/g, 8.4x104 cfu/g and 3.4x105 cfu/g respectively. There were 19 bacterial isolates that have clear zones around the colony as degradation of cellulose had highest ability to degrade cellulose with clear zones of 5-7 mm. The strain of SB1.1.1 showed highest activity of cellulase enzyme 11.17 U/mL, followed by HH3.1.1 strain and SB2.3 7.83 U/mL. Based on the phylogeny tree, strain SB1.1.1 and HH3.1.1 have the closest kinship relationship with Bacillus cereus with a kinship relationship of 100%, while SB2.3 has the closest kinship relationship with Bacillus stratosphericus with a relationship of 99.85 %.

2018 ◽  
Vol 1 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Isna Rahma Dini ◽  
Wawan Wawan ◽  
Hapsoh Hapsoh ◽  
Sriwahyuni Sriwahyuni

One of the organisms that helps in decomposition of oil palm empty fruit bunches is Oryctes rhinoceros L. larvae. This is because of in the gut of the larvae there are many cellulolytic bacteria and lignoliytic. The process of accelerating the decomposition of oil palm empty fruit bunches into compost can be done by optimizing the work of the bacteria. The aim of this research is to obtain cellulolytic and lignolytic bacteria from larvae O. rhinoceros L.. The research succeeded to isolate 24 isolates of cellulolytic bacteria and lignolytic bacterial isolates from the gut of O. rhinoceros larvae. Based on qualitative test, 9 isolate bacteria produced cellulolytic index above 2. The highest cellulolytic index was generated by ORL19 isolate, while the lignolytic index obtained ORL6 isolate. Based on macroscopic and microscopic identification of bacteria, biochemical and physiological tests,  it was found ORL 6 belongs to the genus Bacillus sp. while the ORL 19 belongs to the genus Citrobacter sp..


2018 ◽  
Vol 9 (3) ◽  
pp. 217-222
Author(s):  
Silviana Arsyad ◽  
Suryo Wiyono ◽  
Elis Nina Herliyana

The rubber tree stump is a source of white root fungus inoculums and as a source of infection that causes the death of rubber plant. The emergence of this disease is closely related to the cleanliness of the land such as leftover trees or stumps, shrubs and bushes which stacked or still in the ground. One of the symbionts organisms found in gut of termite and play a role in the decomposition of cellulose, are bacteria. Termite are social insects that are efficiently decompose lignocelluloses with the aid of their associated microbial symbionts located in termite gut. The purpose of this study was to obtain cellulolytic bacterial isolates are derived from gut of termite and getting an cellulolytic which showed the best ability in decomposing rubber tree stumps. The result termite samples from oil palm, rubber, and dry wood contain cellulolytic bacteria characterized by clear zones around bacterial colonies. Bacterial isolates showing the ability to degrade cellulose are 31 isolates and five isolates are safe for plants, animals, or mammals. The three bacterial isolates (NK 4, NS 4, and NS 5) used in the test on rubber tree stumps able to decompose rubber tree stump. Bacterial isolates were each obtained NK 4 13.52%, NS 4 18.40% and NS 5 17.88%.Keywords: bacteria cellulolytic, rubber tree stumps, termite


2019 ◽  
Vol 4 (1) ◽  
pp. 79-88
Author(s):  
Evi Octaviany ◽  
Suharjono Suharjono ◽  
Irfan Mustafa

A commercial saponin as biosurfactant can reduce the surface tension of water and increase of hydrocarbon degradation. However, this saponin can be toxic to some hydrocarbonoclastic bac-teria. This study aimed to obtain bacterial isolates that were tolerant and incapable to degrade saponin, and to identify them based on 16S rDNA sequence. Bacteria were isolated from petroleum contaminated soil in Wonocolo Village, Bojonegoro Regency, East Java, Indonesia. The soil samples were acclimated using Bushnell-Haas (BH) broth with 0.5% crude oil at room temperature for 3 weeks. The culture was spread onto BH agar incubated at 30°C for 7 days. The first screened, isolates were grown in nutrient broth with addition of sap-onin 0%, 8%, and 12% (v/v) then incubated at 30°C for three days. The bacterial cell density was measured using a spectrophotometer. Second screened, the isolates were grown on BH broth with addition of 0.5% saponin as a sole carbon source, and their cell densities were measured. The selected isolates were identified based on 16S rDNA sequences. Among 34 bacterial isolates, nine isolates were tol-erant to 12% saponin. Three bacterial isolates IHT1.3, IHT1.5, and IHT3.24 tolerant to high concentration of saponin and did not use this substance as growth nutrition. The IHT1.3, IHT1.5, and IHT3.24 isolates were identified as Ochrobactrum pseudogrignonense (99% similarity), Pseudomonas mendocina (99%), and Ochrobactrum pi-tuitosum; (97%), respectively. Those three selected isolates are good candidates as hydrocarbon-degrading bacteria to bioremediation of soil contaminated crude oil. However, the combined activity of bacteria and saponin to degrade hydrocarbon needs further study. 


2009 ◽  
Vol 75 (21) ◽  
pp. 6924-6928 ◽  
Author(s):  
Pathmalal M. Manage ◽  
Christine Edwards ◽  
Brajesh K. Singh ◽  
Linda A. Lawton

ABSTRACT Of 31 freshwater bacterial isolates screened using the Biolog MT2 assay to determine their metabolism of the microcystin LR, 10 were positive. Phylogenetic analysis (16S rRNA) identified them as Arthrobacter spp., Brevibacterium sp., and Rhodococcus sp. This is the first report of microcystin degraders that do not belong to the Proteobacteria.


2021 ◽  
Vol 293 ◽  
pp. 01028
Author(s):  
Haili Sun ◽  
Tianpeng Gao ◽  
Guohua Chang ◽  
Xisheng Tai ◽  
Ruiqi Yang ◽  
...  

Phenol is widely used in China, it not only pollutes the environment, but also accumulates toxic substances in the human body through the food chain, further harming humans. In this experiment, a strain of high-efficiency low-temperature degradation phenol bacteria B5 was selected from the soil contaminated by organic matter of Lanzhou. Through research methods such as Gram staining observation, DNA extraction, PCR amplification, sequencing and comparison, it was found that this strain was Pantoea agglomerans. Through the subsequent optimization of degradation conditions, it was found that the B5 strain can degrade 500mg/L of phenol to 24.8mg/L in 36h. The ability to degrade phenol is stronger between pH5.5-pH6.0, and the ability to degrade phenol is higher in a medium containing 4-8g/L sodium chloride. This research can provide certain theoretical guidance for phenol degradation.


2019 ◽  
Vol 4 (2) ◽  
pp. 193
Author(s):  
Prayogo, Boedi Setya Rahardja, Abdul Manan

Abstract The efforts of the catfish hatchery fish are generally confined to the central areas of hatchery that has abundant water resources. Solving the problem of limited water, appears a catfish hatchery system with a closed recirculation system. In such systems the process of biological filtration is the most important thing. It shows the handling of organic materials by utilizing the degrading bacteria is the key to successful management of the system. Thus necessary to be studied the role of bacteria degrading organic matter indigen (local bacteria) in the closed hatchery recirculation system of catfish. This study aimed to obtain bacterial strains degrading bacteria indigen as organic materials are very useful in improving water quality in the closed hatchery recirculation system of catfish and knowing the methods to the use of bacteria indigen as degrading organic matter. The method used in this study was designed based on the stages of research carried out in accordance with the objectives to be achieved. The results of the isolation and identification to the species level showed Pseudomonas stutzeri and Pseudomonas pseudomallei obtain the greatest value for hydrolysis index representing each trait protease, lipase and amylase. Bioremediation effectiveness test in vitro showed effective results in the treatment using consortia of bacteria inoculant. Consortia of bacteria inoculant effective in improving the growth rate and survival rate (SR) in the closed hatchery recirculation system of catfish.


2020 ◽  
Vol 4 (1) ◽  
pp. 48-54
Author(s):  
Wardha Maulidya Pratiwi ◽  
Rana Yumna Nabila ◽  
Heliza Amalini ◽  
Guntur Trimulyono

The purpose of this study was to obtain cellulolytic bacterial isolates isolated from leaf litter in absorption holes biopori FMIPA Unesa and obtain the most optimal cellulolytic bacterial isolates in cellulose degradation. This research was an observational study and the data were analyzed descriptively. Stages of the study began with bacterial isolation, cellulolytic ability testing, and characterization of cellulolytic bacterial isolates. Bacterial isolation was carried out by the pour plate method, isolation was carried out by the streak plate method, cellulolytic testing was carried out using Carboxy Methyl Cellulose media which was given Congo red 1%. While the isolation characterization was done morphologically, physiologically, and biochemically. The results obtained 15 isolates of cellulolytic bacteria that were tested for their ability to degrade cellulose. Cellulolytic test results showed that 6 isolates, namely BS1, BS7, BS10, BS11, BS14, and BS15 had a cellulolytic index of 0.8, 0.8, 0.8, 0.8, 0.8, 0.8. and 1. Isolates BS15 is the most optimal isolate in cellulose degradation with characteristics of the punctiform colony, yellow pigmentation, entire edge, convex elevation, optical opaque and smooth surface, produces catalase enzymes, is non-motile and can ferment in glucose and starch but cannot ferment lactose and also a Gram-negative


2021 ◽  
Vol 37 (2) ◽  
pp. 84-94
Author(s):  
E.C Nwagwu ◽  
V.M Yilwa ◽  
N.E Egbe ◽  
G.B Onwumere

Water bodies become hydrocarbon-polluted when petroleum and other toxic organic matters are discharged into them. Panteka, located in northern Kaduna, Nigeria, is home to Panteka market, which is an industrial hub where different kinds of automobile spare parts are sold and mechanic workshops are situated. The Panteka stream flows through an entry point at Rafin guza, through Panteka market and towards the National Eye Centre. The indiscriminate disposal of spent engine oils and the discharge of other untreated effluents from car servicing workshops into the Panteka stream can lead to hydrocarbon contamination. Consequently, there is a need to identify these hydrocarbons and determine the capability of bacteria isolated from the stream to degrade the hydrocarbon pollutants. Using the pour plate method, and Bushnell Haas agar supplemented with 1% used engine oil, five bacterial isolates with the potential to degrade hydrocarbons were identified as Streptococcus pnuemoniae, Klebsiella pneumoniae, Shigella dysenteriae, Streptococcus pyogenes and Salmonella enterica. Salmonella enterica was confirmed by 16S rRNA gene sequencing and Basic Local Alignment search tool (BLAST) with a similarity index of 99%. The ability of the bacterial isolates to tolerate the spent engine oil was determined by turbidi metry. The results show that all the five bacterial isolates were able to tolerate the 1% (v/v) concentration of the spent engine oil. The highest growth rates (O.D 0.565 and O.D 0.695) were obtained from the pure cultures of Streptococcus pyogenes and the mixed bacterial consortium, respectively. The potentials of the bacteria to degrade hydrocarbons in the stream was analysed using Gas Chromatography Flame Ionization Detector (GC-FID), and the results showed reduction of the Total Petroleum Hydrocarbon (TPH) content from 6,056 mg/ml to 100.17 mg/ml (98.3% degradation) after 28 days of treatment with the mixed bacterial culture. The hydrocarbon fractions degraded were n-Nonane, n-Decane, n-Undecane, n- Dodecane, n-Tridecane, n-Tetradecane, n-Heptadecane, Pristane, n-octadecane, Phytane, n-Eicosane, n-Tricosane, n-Tetracosane, n-Octacosane, n-Triacontane, n-Dotriacontane, n-Tritriacontane, n-Heptriacontane; while n-Pentadecane, n-Hexadecane, n-Nonadecane, n-Heneicosane, n-Docosane, n-Pentacosane, n-Hexacosane, n-Heptacosane, n-Nonacosane, n-Hentriacontane, n-Tetratriacontane, n-Pentatriacontane, and n-Hexatriacontane were not degraded. This study shows that these bacterial strains isolated from the Panteka stream have great potential for bioremediation of the hydrocarbons found in the stream. Keywords: Bioremediation, Panteka stream, Automobile workshop, Hydrocarbon pollution, Bacteria isolates


el–Hayah ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6-11
Author(s):  
Yendania Grevitara P. ◽  
Badriyatur Rahma F. ◽  
Hellen Septirangga P. ◽  
Irma Dahlia Y. ◽  
Endang Suarsini

Cellulolytic bacteria are bacteria that have the ability to hydrolyze cellulose complexes into smaller oligosaccharides and eventually become glucose. Glucose is used as a carbon and energy source for bacterial growth. This study was conducted to isolate the cellulose degrading bacteria from banana peel compost that produce cellulose enzymes based on the clear zone that visible around the colony. The cellulolytic activity was determined by the ability of bacteria to hydrolyze the Carboxymethyl Cellulose (CMC) substrate. Determination of cellulolytic activity is known based on cellulolytic index calculation, the diameter total minus the diameter of the colony and divided by the diameter of the colony. The result of five bacterial isolates was found but only one bacterium had the potential to be a cellulose degradation. Based on the Microbact Gram-Negative Identification System, the bacterium is Burkholderia cepacia. These bacteria have an important role in nature as decomposers of various complex compounds, such as cellulose, hemicellulose, lignin, and pectin.


2020 ◽  
Vol 19 (2) ◽  
Author(s):  
Prilya Dewi Fitriasari ◽  
Nanda Amalia ◽  
Susiyanti Farkhiyah

Talangagung landfill, Malang Regency has used the controlled landfill method. The landfill process produces methane gas that has been flowed as fuel so that it is estimated that there are bacteria with a variety of enzymatic activities that have worked in degrading waste. The purpose of this study was to isolate bacteria from landfill and determine the ability to produce amylase, protease, lipase, and cellulase and test the compatibility of bacteria. The methods used include bacterial isolation using the pour plate method and purification of bacterial isolates using the streak plate method. Bacterial selection is done on selective media containing starch, tributyrin, cellulose, and skim milk. There were 21 bacterial isolates successfully isolated 13 consisting of bacterial isolates showed proteolytic activity, 10 cellulolytic bacteria, 8 amylolytic, and 15 lipolytic. The isolates that show compatible results are BTA 5.7.14, BTA 5.7.7, BTA 5.7.12, and BTA 5.7.6 therefore they can be used as a potential consortium for organic waste recycle.   


Sign in / Sign up

Export Citation Format

Share Document