scholarly journals Isolation and Identification of Hydrocarbons- Degrading Bacteria from Panteka Stream, Kaduna, Nigeria, and Assessment of their Potential for Bioremediation

2021 ◽  
Vol 37 (2) ◽  
pp. 84-94
Author(s):  
E.C Nwagwu ◽  
V.M Yilwa ◽  
N.E Egbe ◽  
G.B Onwumere

Water bodies become hydrocarbon-polluted when petroleum and other toxic organic matters are discharged into them. Panteka, located in northern Kaduna, Nigeria, is home to Panteka market, which is an industrial hub where different kinds of automobile spare parts are sold and mechanic workshops are situated. The Panteka stream flows through an entry point at Rafin guza, through Panteka market and towards the National Eye Centre. The indiscriminate disposal of spent engine oils and the discharge of other untreated effluents from car servicing workshops into the Panteka stream can lead to hydrocarbon contamination. Consequently, there is a need to identify these hydrocarbons and determine the capability of bacteria isolated from the stream to degrade the hydrocarbon pollutants. Using the pour plate method, and Bushnell Haas agar supplemented with 1% used engine oil, five bacterial isolates with the potential to degrade hydrocarbons were identified as Streptococcus pnuemoniae, Klebsiella pneumoniae, Shigella dysenteriae, Streptococcus pyogenes and Salmonella enterica. Salmonella enterica was confirmed by 16S rRNA gene sequencing and Basic Local Alignment search tool (BLAST) with a similarity index of 99%. The ability of the bacterial isolates to tolerate the spent engine oil was determined by turbidi metry. The results show that all the five bacterial isolates were able to tolerate the 1% (v/v) concentration of the spent engine oil. The highest growth rates (O.D 0.565 and O.D 0.695) were obtained from the pure cultures of Streptococcus pyogenes and the mixed bacterial consortium, respectively. The potentials of the bacteria to degrade hydrocarbons in the stream was analysed using Gas Chromatography Flame Ionization Detector (GC-FID), and the results showed reduction of the Total Petroleum Hydrocarbon (TPH) content from 6,056 mg/ml to 100.17 mg/ml (98.3% degradation) after 28 days of treatment with the mixed bacterial culture. The hydrocarbon fractions degraded were n-Nonane, n-Decane, n-Undecane, n- Dodecane, n-Tridecane, n-Tetradecane, n-Heptadecane, Pristane, n-octadecane, Phytane, n-Eicosane, n-Tricosane, n-Tetracosane, n-Octacosane, n-Triacontane, n-Dotriacontane, n-Tritriacontane, n-Heptriacontane; while n-Pentadecane, n-Hexadecane, n-Nonadecane, n-Heneicosane, n-Docosane, n-Pentacosane, n-Hexacosane, n-Heptacosane, n-Nonacosane, n-Hentriacontane, n-Tetratriacontane, n-Pentatriacontane, and n-Hexatriacontane were not degraded. This study shows that these bacterial strains isolated from the Panteka stream have great potential for bioremediation of the hydrocarbons found in the stream. Keywords: Bioremediation, Panteka stream, Automobile workshop, Hydrocarbon pollution, Bacteria isolates

2018 ◽  
Vol 12 (1) ◽  
pp. 115-123
Author(s):  
Amel Hussein ◽  
Saad Khudhair

The accumulation of hydrocarbon waste, such as used engine oils in environments, has many impacts on humans and other organisms, therefore many researches were achieved to degrade or remove or consume these pollutants. The aim of the current study is to get a local bacterial isolates has high ability to degrade the spent engine oil as a single or mixed culture. Five soil samples contaminated with spent engine oil were collected from mechanic workshops in Baghdad city to isolate degrading bacteria using Bushnell Hans medium (BHM), pH 7 with 5% of used engine oil. While the growth patterns and gravimetric analysis was used to reveal the ability of these isolates to degrade spent engine oil in liquid BHM medium. The best three isolates A4, B6 and D5 were identified and the optimal temperature and pH for biodegradation of spending engine oil were studied. Also, the consortium culture of three isolates was tested their ability to utilize spent engine oil under the same conditions for single isolate. Twenty five bacterial isolates were obtained from contaminated soil samples and three isolates appeared a maximum degradation rate 74.6, 70.2 and 78.5% respectively. The results from identification tests were showing these isolates belong to Bacillus sp., Acinetobacter sp. and Pseudomonas sp., respectively. The studied three isolates gave the best degradation when incubated at 30°C in BHM medium pH 7. While other results were indicated that consortium cultures are more effective 90.2% than all experiments that used single isolate.


2019 ◽  
Vol 4 (1) ◽  
pp. 79-88
Author(s):  
Evi Octaviany ◽  
Suharjono Suharjono ◽  
Irfan Mustafa

A commercial saponin as biosurfactant can reduce the surface tension of water and increase of hydrocarbon degradation. However, this saponin can be toxic to some hydrocarbonoclastic bac-teria. This study aimed to obtain bacterial isolates that were tolerant and incapable to degrade saponin, and to identify them based on 16S rDNA sequence. Bacteria were isolated from petroleum contaminated soil in Wonocolo Village, Bojonegoro Regency, East Java, Indonesia. The soil samples were acclimated using Bushnell-Haas (BH) broth with 0.5% crude oil at room temperature for 3 weeks. The culture was spread onto BH agar incubated at 30°C for 7 days. The first screened, isolates were grown in nutrient broth with addition of sap-onin 0%, 8%, and 12% (v/v) then incubated at 30°C for three days. The bacterial cell density was measured using a spectrophotometer. Second screened, the isolates were grown on BH broth with addition of 0.5% saponin as a sole carbon source, and their cell densities were measured. The selected isolates were identified based on 16S rDNA sequences. Among 34 bacterial isolates, nine isolates were tol-erant to 12% saponin. Three bacterial isolates IHT1.3, IHT1.5, and IHT3.24 tolerant to high concentration of saponin and did not use this substance as growth nutrition. The IHT1.3, IHT1.5, and IHT3.24 isolates were identified as Ochrobactrum pseudogrignonense (99% similarity), Pseudomonas mendocina (99%), and Ochrobactrum pi-tuitosum; (97%), respectively. Those three selected isolates are good candidates as hydrocarbon-degrading bacteria to bioremediation of soil contaminated crude oil. However, the combined activity of bacteria and saponin to degrade hydrocarbon needs further study. 


2009 ◽  
Vol 75 (21) ◽  
pp. 6924-6928 ◽  
Author(s):  
Pathmalal M. Manage ◽  
Christine Edwards ◽  
Brajesh K. Singh ◽  
Linda A. Lawton

ABSTRACT Of 31 freshwater bacterial isolates screened using the Biolog MT2 assay to determine their metabolism of the microcystin LR, 10 were positive. Phylogenetic analysis (16S rRNA) identified them as Arthrobacter spp., Brevibacterium sp., and Rhodococcus sp. This is the first report of microcystin degraders that do not belong to the Proteobacteria.


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Siti Khotimah ◽  
Suharjono Suharjono ◽  
Tri Ardyati ◽  
Yulia Nuraini

Abstract. Khotimah S, Suharjono, Ardyati T, Nurani Y. 2020. Isolation and identification of cellulolytic bacteria at fibric, hemic, and sapric peat in Teluk Bakung Peatland, Kubu Raya District, Indonesia. Biodiversitas 21: 2103-2112. Cellulose degrading bacteria was one of the microbial removers of organic matter contained in the soil into simpler monomers so that it can be utilized by other organisms. The objective of the research was to obtain cellulose-degrading bacteria found on fibric, hemic, and sapric peat in forest and shrubs (oil palm). The bacteria were isolated by pour plate method on 1% CMC media. Selected isolates were assayed quantitatively based on the activity of cellulase enzyme, identified with 16S rDNA. The density of cellulolytic bacteria in the secondary forest peat of fibric, hemic, sapric were 2.1x103 cfu/g, 5.9x104 cfu/g, and 4.9x104 cfu/g whereas, in the area of shrubs/oil palm peat fibric, hemic and sapric 6.9x104 cfu/g, 8.4x104 cfu/g and 3.4x105 cfu/g respectively. There were 19 bacterial isolates that have clear zones around the colony as degradation of cellulose had highest ability to degrade cellulose with clear zones of 5-7 mm. The strain of SB1.1.1 showed highest activity of cellulase enzyme 11.17 U/mL, followed by HH3.1.1 strain and SB2.3 7.83 U/mL. Based on the phylogeny tree, strain SB1.1.1 and HH3.1.1 have the closest kinship relationship with Bacillus cereus with a kinship relationship of 100%, while SB2.3 has the closest kinship relationship with Bacillus stratosphericus with a relationship of 99.85 %.


2020 ◽  
Vol 8 (10) ◽  
pp. 866-873
Author(s):  
Motiram Sahu ◽  
◽  
Dinesh Kumar ◽  
Somendra Kumar ◽  
Anil Kumar ◽  
...  

Proficiency of hydrocarbon-degrading bacteria useful for eradicating soil pollution stimulated by seepage of petroleum and their derivative substances, therefore, sequestered different bacterial isolates were bear significant merits for utilizing hydrocarbons as an uncommon source of their growth and development. A colorimetric assay was performed at 595 nm wavelength which was subjected to the mineral salt broth with 1% oil (petrol, diesel, and burned out engine oil). This broth having minimum nutrients used by inoculated bacteria in which some isolates were adopted for taking a sufficient amount of either petrol, diesel, or burned-out engine oil as carbon source hence increases its turbidity that was measured in two days time interval up to twelve days of observation. We found that selected isolates were able to degrade burned out engine oil efficiently in contrast to petrol and diesel. At optical density 0.21± 0.13, 0.19±0.08, 0.18±0.09, 0.17±0.12 the result showed by isolatesBI-7, BI-2, BI-4, BI-6goodcompetency to degrade burned out engine oil. On the other hand, maximum diesel and petrol utilized by BI-2 & BI-1 isolate at O.D. 0.09±0.02, 0.05±0.02 was recorded. Most of the bacterial isolates resulted in a positive biochemical test. BI-1 & BI-7 resulted in positive starch hydrolysis test, whereas, all isolates resulted in positive urease test, simultaneously negative results for all isolates obtained when catalase and antibiotic sensitivity test against streptomycin were performed.


2018 ◽  
Author(s):  
A. A. Ayandele

AbstractThe potential of six microorganisms (Pseudomonas aeruginosa, Micrococcus sp, Flavobacterium sp, Rhizopus sp, Penicillium sp and Fusarium sp) isolated from hydrocarbon contaminated site were evaluated for their biodegradation ability. The soil samples were contaminated with 5% (w/v) of spent engine oil and the rate of biodegradation of the oil was studied for a period of 10weeks under greenhouse experiment. The total heterotrophic bacteria count (THBC), total hydrocarbon degrading bacteria count (THDBC), physicochemical and heavy metals properties of the soil samples and Total Petroleum Hydrocarbon (TPH) were determined after treatment with test organisms. THBC and THDBC ranged from 0.175 to 0.280 CFUg-1 and 0.47 CFUg-1 respectively for the control plot, while THBC is ranging from 0.197 to 0.275 CFUg-1 and THDBC was 0.180 to 0. 473 CFUg-1 for the contaminated plot. There was a slight increase in the pH value of the contaminated soil sample and the treated soil samples as the experimental weeks increased. The results obtained showed a significant decrease (at p ≤ 0.05) in the nutrients content of the soil samples. There was an increase from 1.09 in the control to 15.5% in the content of organic matter after contamination and from 1.88% to 26.8% in the % of organic matter too. There was a significant reduction (at p ≤ 0.05) in the concentration of Fe, Zn, Pb, Cd, Cu, Cr and Ni after 10 weeks of incubation with the tested organisms. Plant growth in the treated contaminated soil samples ranged from 32.6cm to 38.6cm, while that of the control 1 (Uncontaminated soil) was 51.2cm and 19.7cm high was observed in the Control 2 (contaminated untreated soil) after 22 days of the experiment. The TPH degradation (% loss) ranged from 79.7 to 89. 2% after 10 weeks of treatment. P. aeruginosa had the highest level of degradation (89.2%), while Micrococcus sp and Rhizopus sp had the least degradation at 79.9%.All the microorganisms used in this study had the abilities to remediating soil contaminated with spent engine oil and the remediated soil samples were able to support the growth of Zea mays at 5% (w/v) level of contamination.


Author(s):  
Olayinka O. Idris ◽  
◽  
Olayinka T. Ogunmefun ◽  
Cinderella N. Tuesimi

One of the biological compounds limiting soil water retention capacity is oil when present due to its hydro-nature. However, some microorganisms exhibit the capacity to degrade oil as a source of carbon, whereby the soil quality is retained and enhanced. Hence, the gravimetric profile of hydrocarbon degrading bacteria and fungi isolated from oil contaminated soil samples was investigated. Soil samples were collected from surface and 10m depth from six different mechanic workshops and generator sites. The pour plate technique was used to isolate the microorganisms. All pure isolates were sub-cultured using Bushnell Haas agar and the isolated bacteria were identified by their morphological and biochemical characteristics. The soil samples pH range was 4.3 - 6.4. Bacteria isolated included Pseudomonas spp., Staphylococcus spp., Microccocus spp., Acinetobacter spp., and Bacillus spp. The fungi isolated included Aspergillus spp., Rhizopus spp., Candida spp., Trichoderma spp. and Penicillium spp. Degradation of kerosene, diesel, crude oil, engine oil, and spent engine oil was allowed using Acinetobacter baumanni, P. aeruginosa, B. subtilis, and S. aureus. Gravimetric analyses were used to determine the percentage of petroleum hydrocarbon degraded by bacterial isolates. The highest percentage of degradation was between P. aeruginosa and B. subtilis. Pseudomonas aeruginosa degraded 97.4% diesel, 88.2% kerosene, 71.3% crude oil, 80.7% engine oil and 78.2% spent engine oil; while Bacillus subtilis degraded 71% diesel, 97% kerosene, 89.6% crude oil, 87% engine oil and 72.6% spent engine oil. This study revealed that bacterial and fungal isolates from oil contaminated soils exhibited the potentials to degrade oil and bioremediation using these microorganisms was possible.


2014 ◽  
Vol 3 (2) ◽  
pp. 63-75 ◽  
Author(s):  
HY Ismail ◽  
UJJ Ijah ◽  
ML Riskuwa ◽  
II Allamin

Biodegradation of spent engine oil (SEO) by bacteria isolated from the rhizosphere of Cajan cajan and Lablab purpureus was investigated. It was with a view to determining most efficient bacterial species that could degrade SEO in phytoremediation studies. Hydrocarbon degrading bacteria were isolated and identified by enrichment culture technique using oil agar supplemented with 0.1% v/v SEO. Total heterotrophic and oil utilizing bacterial count showed the occurrence of large number of bacteria predominantly in the rhizosphere soil, ranging between 54×108 - 144×108 CFU/g and 4×108- 96×108 CFU/g respectively. Percentage of oil utilizing bacteria ranged between 0% (uncontaminated non rhizosphere soil) to 76% (contaminated rhizosphere). Turbidimetrically, five bacterial species namely Pseudomonas putrefacience CR33, Klebsiella pneumonia CR23, Pseudomonas alcaligenes LR14, Klebsiella aerogenes CR21, and Bacillus coagulans CR31 were shown to grow maximally and degraded the oil at the rate of 68%, 62%, 59%, 58%and 45% respectively. Chromatographic analysis using GC-MS showed the presence of lower molecular weight hydrocarbons in the residual oil (indicating degradation) after 21 days, whereas the undegraded oil (control) had higher molecular weight hydrocarbons after the same period. The species isolated were shown to have high ability of SEO biodegradation and therefore could be important tools in ameliorating SEO contaminated soil. DOI: http://dx.doi.org/10.3126/ije.v3i2.10515 International Journal of the Environment Vol.3(2) 2014: 63-75


Sign in / Sign up

Export Citation Format

Share Document