Influence of Adding Lignin and Wood as Reactive Fillers on the Properties of Lightweight Wood–Polyurethane Composite Foams

2020 ◽  
Vol 70 (4) ◽  
pp. 420-427
Author(s):  
Shupin Luo ◽  
Li Gao ◽  
Wenjing Guo

Abstract In this study, bio-based rigid polyurethane (PU) composite foams were prepared by a free-rising method, with the addition of wood particles (10 and 20 weight percent by the foam mass) and kraft lignin (5 and 10 weight percent by the polyol mass) as reactive reinforcing fillers. The resultant PU composites were evaluated for chemical structure, density, morphology, compressive properties, water uptake, and thermal stability. Fourier-transform infrared analysis confirmed the formation of characteristic urethane bonds in all foam samples. The foaming process was slowed down by the incorporation of lignin and wood particles. The apparent density of lignin-incorporated wood–PU composite foam ranged between 77 and 105 g/cm3. Compared with the neat PU foam, addition of wood particle resulted in decreased compressive properties and increased water uptake of the foams, whereas incorporation of lignin had a positive effect on the compressive properties and water resistance. In general, the PU foam sample with the incorporation of only 5 percent lignin (PUL5) exhibited the optimal physical–mechanical properties, with the compressive strength increased by 74 percent and 24-hour water uptake decreased by 28 percent compared with the control PU foam. Thermogravimetric analysis showed that the incorporation of lignin and wood particles did not significantly affect the thermal degradation pattern of foam but rather increased the mass of char residue.


2014 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Saibatul Hamdi

The purpose of this research is to know the mechanical strength of gypsum board by utilizing waste sawn wood. Raw materials used consist of flour, gypsum,wood particles, boraks and kambang (Goniothalamus sp), wood tarap (Artocarpus elasticus REINW) and lua (Ficus glomerata ROXB). Wood particle 40 mesh and 60 mesh, concentrations boraks of 1 and 2 and the percentage particles of gypsum sawn timber is 300, 400 and 500%. The results showed that the average value Modulus of Rufture (MoR) in lua wood ranges from 12.55 – 14,47 kgcm2, wood kambang 25.10-31,11 kgcm2 and wood tarap 19.20- 24,18 kgcm2. As for Modulus of Elasticity (MoE) on the lua 1129,80- 2092,70 kgcm2, wood kambang 2512,37-3971,32 kgcm2 and tarap 2050,63-2691,09 kgcm2. Gypsum board are mechanical properties do not meet quality standards created SNI 03-6434-2000.Keywords: sawdust, lua, kambang, tarap, gypsum, mechanical



Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3474
Author(s):  
Katarzyna Uram ◽  
Milena Leszczyńska ◽  
Aleksander Prociak ◽  
Anna Czajka ◽  
Michał Gloc ◽  
...  

Rigid polyurethane foams were obtained using two types of renewable raw materials: bio-polyols and a cellulose filler (ARBOCEL® P 4000 X, JRS Rettenmaier, Rosenberg, Germany). A polyurethane system containing 40 wt.% of rapeseed oil-based polyols was modified with the cellulose filler in amounts of 1, 2, and 3 php (per hundred polyols). The cellulose was incorporated into the polyol premix as filler dispersion in a petrochemical polyol made using calenders. The cellulose filler was examined in terms of the degree of crystallinity using the powder X-ray diffraction PXRD -and the presence of bonds by means of the fourier transform infrared spectroscopy FT-IR. It was found that the addition of the cellulose filler increased the number of cells in the foams in both cross-sections—parallel and perpendicular to the direction of the foam growth—while reducing the sizes of those cells. Additionally, the foams had closed cell contents of more than 90% and initial thermal conductivity coefficients of 24.8 mW/m∙K. The insulation materials were dimensionally stable, especially at temperatures close to 0 °C, which qualifies them for use as insulation at low temperatures.



2021 ◽  
pp. 026248932198897
Author(s):  
Serife Akkoyun ◽  
Meral Akkoyun

The aim of this work is the fabrication of electrically insulating composite rigid polyurethane foams with improved thermal conductivity. Therefore, this study is focused on the effect of aluminum nitride (AlN) on the thermal and electrical conductivities of rigid polyurethane foams. For this purpose, aluminum nitride/rigid polyurethane composite foams were prepared using a three-step procedure. The electrical and thermal conductivities of the foams were characterized. The thermal transitions, mechanical properties and morphology of the foams were also examined. The results reveal that AlN induces an increase of the thermal conductivity of rigid polyurethane foam of 24% which seems to be a relatively noticeable increase in polymeric foams. The low electrical conductivity of the foams is preserved.





2021 ◽  
Vol 11 ◽  
pp. e00722
Author(s):  
Charles Kuranchie ◽  
Abu Yaya ◽  
Yaw Delali Bensah




2020 ◽  
Vol 86 ◽  
pp. 106479 ◽  
Author(s):  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Agnė Kairytė ◽  
Arūnas Kremensas


2013 ◽  
Vol 395-396 ◽  
pp. 3-6
Author(s):  
Rong Zhen Jin ◽  
Nian Suo Xie ◽  
Jiao Jiao Li ◽  
Jing Che

SiC particle reinforced AlCu5Mn composite foams (SiCp/ZAlCu5Mn composite foams) were fabricated by the direct foaming of the melt. The quasi-static compressive properties of SiCp/ZAlCu5Mn composite foams were tested by compressive test. The effects of SiC particle, the average diameter of pores, and the relative density on the quasi-static compressive properties of SiCp/ZAlCu5Mn composite foams were performed with the universal material testing machine. The microstructure of SiCp/ZAlCu5Mn composite was studied by SEM. The results show that choosing small size of SiC particles as reinforced material, thinning pore diameter, and increasing the relative density of SiCp/ZAlCu5Mn composite foams with the same volume fraction of SiC particles can improve the energy absorption ability under the quasi-static loading. SiCp/ZAlCu5Mn composite foams are of well compressive property. The compressive deformation course of SiCp/ZAlCu5Mn composite foams involves three stages that are the linearly elastic deformation region, the collapse plateau region, and the densification region. The test results may be influenced by strain gauge, data processing method, shape of incident wave etc.



Sign in / Sign up

Export Citation Format

Share Document