scholarly journals Use of Reactivated Spent FCC Catalyst as Adsorbent for Lead (II) Ions from Refinery-based Simulated Wastewater

2021 ◽  
Vol 10 (2) ◽  
pp. 100-116
Author(s):  
Abdulkareem Abubakar ◽  
Ijai Ezekiel Waba ◽  
Suleiman Yunusa ◽  
Zaharaddeen Sani Gano

Improper handling of wastewater from various industries causes environmental pollution. Hence, this study involved using a reactivated spent FCC catalyst, a cheap and reliable adsorbent for Pb2+ removal from refinery-based simulated wastewater. In contrast, response surface methodology (RSM) was used to determine the optimum operating condition. The adsorptive capacity of the reactivated spent FCC catalyst was observed using different parameters such as temperature, pH, adsorbent dosage, and contact time. At the end of the study, it was found that the optimum condition for removing Pb2+ was at pH of 7, adsorbent dose of 1.75 g, contact time of 75 mins, and temperature of 117 oC. At this condition, the maximum removal efficiency of Pb2+ was found to be 100 %. A quadratic model equation via central composite design under the RSM was developed to predict the Pb2+ removal from all the input parameters. Based on the F-statistic values, the temperature had the greatest influence on the removal of Pb2+ while adsorbent dosage and contact time were also significant.  

2020 ◽  
Vol 83 (1) ◽  
pp. 27-36
Author(s):  
Mardawani Mohamad ◽  
Rizki Wannahari ◽  
Rosmawani Mohammad ◽  
Noor Fazliani Shoparwe ◽  
Kwan Wei Lun ◽  
...  

Used coffee grounds usually end up as landfill. However, the unique structural properties of its porous surface make coffee grounds can be transformed into biochar and performed as an alternative low cost adsorbent. Malachite green (MG) is a readily water soluble dye which is used extensively in textile and aquaculture industries. The mordant complex structures of MG generate destructive effects to animals and environment. In this study, adsorption of malachite green using spent coffee ground biochar as adsorbent was investigated. The experiments were designed in two methods: classical and optimisation by response surface methodology. Three parameters were studied, which are adsorbent dosage, contact time and pH while the responses in this study are malachite green removal (%) and adsorption capacity (mg/g). Optimisation studies were performed using response surface methodology. Quadratic model was chosen for both response and studied using central composite design. The correlation coefficient, R2 for the quadratic model of malachite green removal (%) and adsorption capacity (mg/g) were 0.95 and 0.99, respectively. The optimum malachite green removal (%) predicted was found at 99.27%, by using 0.12 g of adsorbent dosage, 43.05 minutes of contact time and pH of 9.45 at desirability of 1.0. The optimum adsorption capacity (mg/g) predicted was found at 118.01 mg/g, by using 0.02 g of adsorbent dosage, 60 minutes of contact time and pH of 10.24 at desirability of 0.98. So, it was concluded that the spent coffee ground biochar can be used as an effective adsorbent for malachite green removal from aqueous solution.


2021 ◽  
Vol 920 (1) ◽  
pp. 012019
Author(s):  
N A M Hussin ◽  
C Z A Abidin ◽  
Fahmi ◽  
A H Ibrahim ◽  
R Ahmad ◽  
...  

Abstract The degradation of anthraquinone dye Reactive Blue 19 by using O3 and O3 / S2O8 2- in the advanced oxidation processes is studied to investigate the performance of these two systems. The response surface method with a Box-behnken Design was successfully applied to identify the relationship between operating variables such as initial concentration, S2O8 2- dosage and contact time in order to determine the optimum operating condition. The quadratic model for the percentage COD removal (response) proved to be significant for the degradation of the dye. The COD removal efficiency under Box-behnken Design and experimental test were found to be 96.2% and 83.9% under the optimum conditions. Furthermore, the result obtained showed that the O3 / S2O8 2- system is more effective than the O3 only in treating the Reactive Blue 19.


1983 ◽  
Vol 105 (4) ◽  
pp. 713-718 ◽  
Author(s):  
L. S. Akin ◽  
D. P. Townsend

An analysis was conducted for into mesh oil jet lubrication with an arbitrary offset and inclination angle from the pitch point for the case where the oil jet velocity is equal to or less than pitch line velocity. The analysis includes the case for the oil jet offset from the pitch point in the direction of the pinion and where the oil jet is inclined to intersect the common pitch point. Equations were developed for the minimum oil jet velocity required to impinge on the pinion or gear and the optimum oil jet velocity to obtain the maximum impingement depth. The optimum operating condition for best lubrication and cooling is provided when the oil jet velocity is equal to the gear pitch line velocity with both sides of the gear tooth cooled. When the jet velocity is reduced from pitch line velocity the drive side of the pinion and the unloaded side of the gear is cooled. When the jet velocity is much lower than the pitch line velocity the impingement depth is very small and may completely miss the pinion.


2012 ◽  
Vol 232 ◽  
pp. 609-613
Author(s):  
Ali Baghernejad ◽  
Mahmood Yaghoubi

In the present study, a specific and simple second law based exergoeconomic model with instant access to the production costs is introduced. The model is generalized for a case study of Shiraz solar thermal power plant with parabolic collectors for nominal power supply of 500 kW. Its applications include the evaluation of utility costs such as products or supplies of production plant, the energy costs between process operations of an energy converter such as production of an industry. Also attempt is made to minimize objective function including investment cost of the equipments and cost of exergy destruction for finding optimum operating condition for such plant.


2017 ◽  
Vol 76 (4) ◽  
pp. 776-784 ◽  
Author(s):  
Mijia Zhu ◽  
Jun Yao ◽  
Zhonghai Qin ◽  
Luning Lian ◽  
Chi Zhang

Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.


Author(s):  
Yohanita Restu Widihastuty ◽  
Sutini Sutini ◽  
Aida Nur Ramadhani

Pineapple leaf waste is one agricultural waste that has high cellulose content. Pineapple leaf waste's complex structure contains a bundle of packed fiber that makes it hard to remove lignin and hemicellulose structure, so challenging to produce reducing sugar. Dried pineapple leaf waste pretreated with a grinder to break its complex structure. Delignification process using 2% w/v NaOH solution at 87oC for 60 minutes has been carried out to remove lignin and hemicellulose structure so reducing sugar could be produced. Delignified pineapple leaf waste has been enzymatic hydrolyzed using cellulase enzyme (6 mL, 7 mL, and 8 mL) to produce reducing sugar. The sample was incubated in an incubator shaker at 155 rpm at 45, 55, and 60oC for 72 hours. Determination of reducing sugar yield had been carried out using the Dubois method and HPLC. The model indicated that the optimum operating condition of enzymatic hydrolysis is 7 mL of cellulase enzyme at 55oC to produce 96,673 mg/L reducing sugar. This result indicated that the enzymatic hydrolysis operating condition improved the reducing sugar yield from pineapple leaf waste. The optimum reducing sugar yield can produce biofuel by the saccharification process.


1994 ◽  
Vol 360 ◽  
Author(s):  
Ichiro Sasada

AbstractThis paper begins with a review of the current problems associated with the application of conventional magnetic-head-type shaft torque sensors. These sensors were first proposedin 1954. Newly developed low-profile magnetic heads for torque sensors which address the problems of the older type of sensors are then presented. The torque sensor which uses the lowprofile pick-up heads is described in detail. Experimental results showing the basicperformance of the torque sensor with carburized nickel chromium molybdenum steel shafts (SNCM 420 in JIS) are then described. In this combination of the heads and the shaft, thehysteresis of the inputoutput relationship is generally small and shows that the direction of traversal around the hysteresis loop changes as the amplitude of the excitation current changes. It is shown that an optimum operating condition exists for the torque sensorin which the hysteresis achieves a minimum value yet the sensitivity remains high. In a particular combination studied in this paper, the optimum excitation current was 0.3 A at the excitation frequency 60 kHz, where the total power loss at the pick-up heads was 0.37W. Under this operating condition, the hysteresis was extremely small, and the linearity was better than 0.6%.


Author(s):  
Y. Yerima ◽  
I. Eiroboyi ◽  
I. Eiroboyi

Biomass-based activated carbon has received large attention due to its excellent characteristics such as inexpensiveness, good absorption behaviour, and potential to reduce strong dependence towards non-renewable precursors. The potential use of Palm Kernel Shell in modified activated carbon was evaluated by using the Response Surface Methodology. In this study, a 23 three-level Central Composite Design (CCD) was used to develop a statistical model for the optimization of process variables, contact time (10-130mins) X1, pH (5.0 – 8.0) X2, and adsorbent dose (0.4 -5.0g) X3. The investigation shows that Ethylene Di-Amine Tetra-Acetic Acid modified activated carbon prepared from Palm Kernel Shell is a promising adsorbent for the removal of copper ions from aqueous solutions over a wide range of concentrations with an optimized efficiency of 99% at the solution pH of 7.2, contact time of 70 minutes and adsorbent dose of 2.1g/L. The adsorption results are in line with the linear and quadratic model representation, which is evident from the models for optimization of copper ions.


Sign in / Sign up

Export Citation Format

Share Document