scholarly journals Accumulator-free Hough Transform for Sequence Collinear Points

2021 ◽  
Vol 10 (2) ◽  
pp. 74-83
Author(s):  
Rudi Kurniawan ◽  
Zahrul Fuadi ◽  
Ramzi Adriman

The perception, localization, and navigation of its environment are essential for autonomous mobile robots and vehicles. For that reason, a 2D Laser rangefinder sensor is used popularly in mobile robot applications to measure the origin of the robot to its surrounding objects. The measurement data generated by the sensor is transmitted to the controller, where the data is processed by one or multiple suitable algorithms in several steps to extract the desired information. Universal Hough Transform (UHT) is one of the appropriate and popular algorithms to extract the primitive geometry such as straight line, which later will be used in the further step of data processing. However, the UHT has high computational complexity and requires the so-called accumulator array, which is less suitable for real-time applications where a high speed and low complexity computation is highly demanded. In this study, an Accumulator-free Hough Transform (AfHT) is proposed to reduce the computational complexity and eliminate the need for the accumulator array. The proposed algorithm is validated using the measurement data from a 2D laser scanner and compared to the standard Hough Transform. As a result, the extracted value of AfHT shows a good agreement with that of UHT but with a significant reduction in the complexity of the computation and the need for computer memory.

1999 ◽  
Vol 122 (1) ◽  
pp. 131-136 ◽  
Author(s):  
S. Yoshimoto ◽  
Y. Ito ◽  
A. Takahashi

A laser scanner motor with low power and high speed has been developed. This scanner motor uses a herringbone-grooved journal bearing which functions as a viscous vacuum pump. The windage power loss of a polygon mirror is reduced, since the air inside the pump housing is pumped out by herringbone-grooved viscous vacuum action. In this paper, the theoretical pumping characteristic of this bearing is investigated, using the narrow-groove theory and accounting for first-order slip flow. The effects of various design parameters on the pumping characteristics are discussed. Optimum geometric design parameters were found to obtain the minimum inner chamber pressure of the housing. The theoretical predictions considering slip flow effects are in good agreement with experimental measurements. [S0742-4787(00)01801-4]


Author(s):  
Yа. Luts ◽  
V. Luts

In order to develop a high-speed simplified image codec, an analysis of the influence of known image compression algorithms and other parameters on performance was done. The relevance and expediency of developing a high-speed simplified image codec for the Internet of Things in order to increase the level of autonomy of IoT devices, reduce the cost of construction and dissemination of IoT infrastructure were substantiated. The efficiency coefficient of image compression algorithms was introduced, which is determined by the ratio between the computational complexity of the algorithms and their contribution to the final result. Simplification and reduction of the number of algorithms for predicting pixel values ​​were proposed and substantiated, because at this stage a significant number of computational operations is added by the procedure of comparing different prediction algorithms with each other. It is proposed to use only one block integer transformation with fast low complexity algorithms of calculating, which will significantly reduce the complexity of the block transformation stage, including due to the lack of high computational complexity of the algorithm for comparing the quality of block transformations. At the stage of entropy coding, it is also proposed to use simplified algorithms, because the contribution of this stage to the overall result in the general background is quite small, and the computational complexity is high (50 – 70 % of all calculations). A new algorithm for progressive image transfer was proposed - the transfer of a reduced image followed by the transfer of the original image on demand. The considered approaches and algorithms for the development of high-speed simplified image codec can be applied to further development of high-speed simplified video codec. Keywords: computational complexity, fast transforms, computational efficiency, progressive data transfer, intra-prediction algorithms, simplified image codec, IoT.


Author(s):  
Oday Jasim Al-Furaiji ◽  
Nguyen Anh Tuan ◽  
Viktar Yurevich Tsviatkou

<span>In this paper, the problem of finding local extrema in grayscale images is considered. The known non-maximum suppression algorithms provide high speed, but only single-pixel extrema are extracted, skipping regions formed by multi-pixel extrema. Morphological algorithms allow to</span><span>extract all extrema but its maxima and minima are processed separately with high computational complexity by iterative processing based on image reconstruction using image morphological dilation and erosion. In this paper a new fast efficient non-maximum suppression algorithm based on image segmentation and border analysis is proposed. The proposed algorithm considers homogeneous areas, which are formed by multi-pixel extrema and are the local maxima or minima in relation to adjacent areas, eliminating iterative processing of non-extreme pixels and assigning label numbers to local extrema during their search. The proposed algorithm allowed to increase the accuracy of local extremum extraction in comparison with known non-maximum suppression algorithms and reduce the computational complexity and the use of RAM in comparison with the morphological algorithms.</span>


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6387 ◽  
Author(s):  
Xiaohan Tu ◽  
Cheng Xu ◽  
Siping Liu ◽  
Shuai Lin ◽  
Lipei Chen ◽  
...  

As overhead contact (OC) is an essential part of power supply systems in high-speed railways, it is necessary to regularly inspect and repair abnormal OC components. Relative to manual inspection, applying LiDAR (light detection and ranging) to OC inspection can improve efficiency, accuracy, and safety, but it faces challenges to efficiently and effectively segment LiDAR point cloud data and identify catenary components. Recent deep learning-based recognition methods are rarely employed to recognize OC components, because they have high computational complexity, while their accuracy needs to be improved. To track these problems, we first propose a lightweight model, RobotNet, with depthwise and pointwise convolutions and an attention module to recognize the point cloud. Second, we optimize RobotNet to accelerate its recognition speed on embedded devices using an existing compilation tool. Third, we design software to facilitate the visualization of point cloud data. Our software can not only display a large amount of point cloud data, but also visualize the details of OC components. Extensive experiments demonstrate that RobotNet recognizes OC components more accurately and efficiently than others. The inference speed of the optimized RobotNet increases by an order of magnitude. RobotNet has lower computational complexity than other studies. The visualization results also show that our recognition method is effective.


1982 ◽  
Vol 104 (4) ◽  
pp. 750-757 ◽  
Author(s):  
C. T. Avedisian

A study of high-pressure bubble growth within liquid droplets heated to their limits of superheat is reported. Droplets of an organic liquid (n-octane) were heated in an immiscible nonvolatile field liquid (glycerine) until they began to boil. High-speed cine photography was used for recording the qualitative aspects of boiling intensity and for obtaining some basic bubble growth data which have not been previously reported. The intensity of droplet boiling was found to be strongly dependent on ambient pressure. At atmospheric pressure the droplets boiled in a comparatively violent manner. At higher pressures photographic evidence revealed a two-phase droplet configuration consisting of an expanding vapor bubble beneath which was suspended a pool of the vaporizing liquid. A qualitative theory for growth of the two-phase droplet was based on assuming that heat for vaporizing the volatile liquid was transferred across a thin thermal boundary layer surrounding the vapor bubble. Measured droplet radii were found to be in relatively good agreement with predicted radii.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1410
Author(s):  
Mohamed Mounir ◽  
Mohamed B. El_Mashade ◽  
Salah Berra ◽  
Gurjot Singh Gaba ◽  
Mehedi Masud

Several high-speed wireless systems use Orthogonal Frequency Division Multiplexing (OFDM) due to its advantages. 5G has adopted OFDM and is expected to be considered beyond 5G (B5G). Meanwhile, OFDM has a high Peak-to-Average Power Ratio (PAPR) problem. Hybridization between two PAPR reduction techniques gains the two techniques’ advantages. Hybrid precoding-companding techniques are attractive as they require small computational complexity to achieve high PAPR reduction gain. Many precoding-companding techniques were introduced to increasing the PAPR reduction gain. However, reducing Bit Error Rate (BER) and out-of-band (OOB) radiation are more significant than increasing PAPR reduction gain. This paper proposes a new precoding-companding technique to better reduce the BER and OOB radiation than previous precoding-companding techniques. Results showed that the proposed technique outperforms all previous precoding-companding techniques in BER enhancement and OOB radiation reduction. The proposed technique reduces the Error Vector Magnitude (EVM) by 15 dB compared with 10 dB for the best previous technique. Additionally, the proposed technique increases high power amplifier efficiency (HPA) by 11.4%, while the best previous technique increased HPA efficiency by 9.8%. Moreover, our proposal achieves PAPR reduction gain better than the most known powerful PAPR reduction technique with a 99% reduction in required computational complexity.


Sign in / Sign up

Export Citation Format

Share Document