scholarly journals Horseradish peroxidase-labeled rabbit anti-non-structural protein 1 of dengue virus-2 for the diagnosis of dengue virus infections

2019 ◽  
Vol 28 (2) ◽  
pp. 103-9
Author(s):  
Evy Suryani Arodes ◽  
Beti Ernawati Dewi ◽  
Tjahjani Mirawati Sudiro

BACKGROUND Early diagnosis of dengue virus (DENV) infection is essential for patient management and disease control. Detection of the antigen non-structural protein 1 (NS1) has been proven to provide early diagnosis of DENV infection. Thus, commercial NS1 antigen detection assays have been increasingly used and are becoming thetool of choice among clinicians to confirm DENV infection in Indonesia. METHODS To obtain anti-NS1 DENV antibody, NS1 protein (90 µg/ml) from the collection of the Department of Microbiology, Faculty of Medicine, Universitas Indonesia was injected into a rabbit. The anti-NS1 antibody from the rabbit was then labeled with horseradish peroxidase (HRP) using the periodate oxidation method. Sera were tested by enzyme-linked immunosorbent assay (ELISA) to detect NS1 from DENV-infected patients. RESULTS Serially diluted antibody labeled with HRP tested using the direct ELISA method showed the highest absorbance value at a 1:100 dilution (Mean [SD] = 1.35 [0.35]); even at a dilution as high as 1:3,200 (0.22 [0.15]), antibody labeled with HRP was able to detect the NS1 protein, although the absorbance value did not differ greatly from that of the negative control (0.13 [0.01]). CONCLUSIONS In an attempt to develop an NS1-based diagnostic test, polyclonal anti-NS1 DENV antibody was successfully produced as a diagnostic assay to determine the presence of DENV NS1 antigen in patients’ sera.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2641 ◽  
Author(s):  
Daniel Wasik ◽  
Ashok Mulchandani ◽  
Marylynn Yates

Dengue virus (DENV) is a highly pathogenic, arthropod-borne virus transmitted between people by Aedes mosquitoes. Despite efforts to prevent global spread, the potential for DENV epidemics is increasing world-wide. Annually, 3.6 billion people are at risk of infection. With no licensed vaccine, early diagnosis of dengue infection is critical for clinical management and patient survival. Detection of DENV non-structural protein 1 (NS1) is a clinically accepted biomarker for the early detection of DENV infection. Unfortunately, virtually all of the laboratory and commercial DENV NS1 diagnostic methods require a blood draw for sample analysis, limiting point-of-care diagnostics and decreases patient willingness. Alternatively, NS1 in human saliva has been identified for the potential early diagnosis of DENV infection. The collection of saliva is simple, non-invasive, painless, and inexpensive, even by minimally trained personnel. In this study, we present a label-free chemiresistive immunosensor for the detection of the DENV NS1 protein utilizing a network of single-walled carbon nanotubes functionalized with anti-dengue NS1 monoclonal antibodies. NS1 was successfully detected in adulterated artificial human saliva over the range of clinically relevant concentrations with high sensitivity and selectivity. It has potential application in clinical diagnosis and the ease of collection allows for self-testing, even within the home.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip Raj Abraham ◽  
Bharathy R ◽  
Pradeep Kumar N ◽  
Ashwani Kumar

AbstractDengue, caused by the dengue virus (DENV) is a significant vector-borne disease. In absence of a specific treatment and vaccine, dengue is becoming a rising threat to public health. Currently, control of dengue mainly focuses on the surveillance of the mosquito vectors. Improved surveillance methods for DENV in mosquito populations would be highly beneficial to the public health. However, current methods of DENV detection in mosquitoes requires specialized equipment and expensive reagents and highly trained personnel. As an alternative, commercially available dengue NS1 antigen ELISA kits could be used for detection of DENV infection in Aedes aegypti mosquitoes. In this study, we explored the utility of commercially available Dengue NS1 antigen kit (J. Mitra & Co. Pvt. Ltd) for the detection of recombinant dengue virus-2 (rDENV-2) NS1 protein and serum of dengue infected patient spiked with Ae. aegypti mosquito pools. The kit was found to be highly sensitive and specific towards detection of all serotypes of DENV. Further, it could detect as low as 750 femto gram rDENV-2 NS1 protein. It was also observed that rDENV-2 NS1 antigen spiked with blood-fed and unfed mosquito pools could be detected. In addition, the kit also detected dengue infected patient serum spiked with Ae. aegypti mosquito pools. Overall, the Dengue NS1 antigen kit displayed high sensitivity towards detection of recombinant as well as serum NS1 protein spiked with Ae. aegypti mosquito pools and could be considered for the dengue virus surveillance after a field evaluation in Ae. aegypti mosquitoes.


2019 ◽  
Vol 57 (7) ◽  
Author(s):  
Szu-Chia Lai ◽  
Yu-Yine Huang ◽  
Pei-Yun Shu ◽  
Shu-Fen Chang ◽  
Po-Shiuan Hsieh ◽  
...  

ABSTRACTDengue fever, caused by infections with the dengue virus (DENV), affects nearly 400 million people globally every year. Early diagnosis and management can reduce the morbidity and mortality rates of severe forms of dengue disease as well as decrease the risk of wider outbreaks. Although the early diagnosis of dengue can be achieved using a number of commercial NS1 detection kits, none of these can differentiate among the four dengue virus serotypes. In this study, we developed an enzyme-linked immunosorbent assay (ELISA) for the detection of dengue virus (DENV) NS1 by pairing a serotype-cross-reactive monoclonal antibody (MAb) with one of four serotype-specific MAbs in order to facilitate the rapid detection of NS1 antigens and the simultaneous differentiation of DENV serotypes. A total of 146 serum samples obtained from patients suspected to be in the acute phase of DENV infection were used to evaluate the clinical application of our novel test for the detection and serotyping of DENV. The overall sensitivity rate of our test was 84.85%, and the sensitivity rates for serotyping were as follows: 88.2% (15/17) for DENV serotype 1 (DENV1), 94.7% (18/19) for DENV2, 75% (12/16) for DENV3, and 66.6% (6/9) for DENV4. Moreover, there was no cross-reactivity among serotypes, and no cross-reactivity was observed in sera from nondengue patients. Thus, our test not only enables the rapid detection of the dengue virus but also can distinguish among the specific serotypes during the early stages of infection. These results indicate that our ELISA for DENV NS1 is a convenient tool that may help elucidate the epidemiology of DENV outbreaks and facilitate the clinical management of DENV infections.


2017 ◽  
Vol 8 ◽  
pp. 1178122X1769126 ◽  
Author(s):  
Ahmed M Ashshi ◽  
Saad Alghamdi ◽  
Adel G El-Shemi ◽  
Sabir Almdani ◽  
Bassem Refaat ◽  
...  

Background: Threat to blood transfusion–transmitted dengue virus (DENV) and its antibodies has recently emerged worldwide. Dengue fever is an endemic disease in Saudi Arabia, particularly in its Western region. The aim of this study was to estimate the seroprevalence of asymptomatic DENV infection and its antibodies among eligible Saudi blood donors. Methods: Serum samples from 910 healthy/eligible adult male Saudi blood donors, who reside in Holy Makkah City of Saudi Arabia, were collected between March 2015 and August 2016 and screened for the detection of DENV nonstructural protein 1 (NS1) antigen and anti-DENV IgM and IgG antibodies using commercial enzyme-linked immunosorbent assay kits (Panbio, Brisbane, QLD, Australia). Results: Among the tested donors, 48 (5.3%) were seropositive for DENV-NS1 antigen, whereas 50 (5.5%) and 354 (38.9%) were seropositive for anti-DENV IgM and IgG antibodies, respectively. Seropositivity for DENV-NS1 antigen and/or anti-DENV IgM antibody among the tested donors reflects their ongoing asymptomatic viremic infectious stage with DENV during their donation time, whereas high prevalence of anti-DENV IgG seropositivity reflects the high endemicity of dengue disease in this region of Saudi Arabia. Conclusions: These results show high prevalence of asymptomatic DENV infection and its antibodies among Saudi blood donors, raising the importance of establishing blood screening for dengue disease at different blood donation services and units in Saudi Arabia to improve the guarantee of blood transfusions and to control DENV dissemination.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 726
Author(s):  
Nikole L. Warner ◽  
Kathryn M. Frietze

Dengue virus (DENV) is a major global health problem, with over half of the world’s population at risk of infection. Despite over 60 years of efforts, no licensed vaccine suitable for population-based immunization against DENV is available. Here, we describe efforts to engineer epitope-based vaccines against DENV non-structural protein 1 (NS1). NS1 is present in DENV-infected cells as well as secreted into the blood of infected individuals. NS1 causes disruption of endothelial cell barriers, resulting in plasma leakage and hemorrhage. Immunizing against NS1 could elicit antibodies that block NS1 function and also target NS1-infected cells for antibody-dependent cell cytotoxicity. We identified highly conserved regions of NS1 from all four DENV serotypes. We generated synthetic peptides to these regions and chemically conjugated them to bacteriophage Qβ virus-like particles (VLPs). Mice were immunized two times with the candidate vaccines and sera were tested for the presence of antibodies that bound to the cognate peptide, recombinant NS1 from all four DENV serotypes, and DENV-2-infected cells. We found that two of the candidate vaccines elicited antibodies that bound to recombinant NS1, and one candidate vaccine elicited antibodies that bound to DENV-infected cells. These results show that an epitope-specific vaccine against conserved regions of NS1 could be a promising approach for DENV vaccines or therapeutics to bind circulating NS1 protein.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6821
Author(s):  
Rasel Ahmed Khan ◽  
Rajib Hossain ◽  
Abolghasem Siyadatpanah ◽  
Khattab Al-Khafaji ◽  
Abul Bashar Ripon Khalipha ◽  
...  

Dengue fever is a dangerous infectious endemic disease that affects over 100 nations worldwide, from Africa to the Western Pacific, and is caused by the dengue virus, which is transmitted to humans by an insect bite of Aedes aegypti. Millions of citizens have died as a result of dengue fever and dengue hemorrhagic fever across the globe. Envelope (E), serine protease (NS3), RNA-directed RNA polymerase (NS5), and non-structural protein 1 (NS1) are mostly required for cell proliferation and survival. Some of the diterpenoids and their derivatives produced by nature possess anti-dengue viral properties. The goal of the computational study was to scrutinize the effectiveness of diterpenoids and their derivatives against dengue viral proteins through in silico study. Methods: molecular docking was performed to analyze the binding affinity of compounds against four viral proteins: the envelope (E) protein, the NS1 protein, the NS3 protein, and the NS5 protein. Results: among the selected drug candidates, triptolide, stevioside, alepterolic acid, sphaeropsidin A, methyl dodovisate A, andrographolide, caesalacetal, and pyrimethamine have demonstrated moderate to good binding affinities (−8.0 to −9.4 kcal/mol) toward the selected proteins: E protein, NS3, NS5, and NS1 whereas pyrimethamine exerts −7.5, −6.3, −7.8, and −6.6 kcal/mol with viral proteins, respectively. Interestingly, the binding affinities of these lead compounds were better than those of an FDA-approved anti-viral medication (pyrimethamine), which is underused in dengue fever. Conclusion: we can conclude that diterpenoids can be considered as a possible anti-dengue medication option. However, in vivo investigation is recommended to back up the conclusions of this study.


2012 ◽  
Vol 19 (5) ◽  
pp. 804-810 ◽  
Author(s):  
Stuart D. Blacksell ◽  
Richard G. Jarman ◽  
Robert V. Gibbons ◽  
Ampai Tanganuchitcharnchai ◽  
Mammen P. Mammen ◽  
...  

ABSTRACTSeven commercial assays were evaluated to determine their suitability for the diagnosis of acute dengue infection: (i) the Panbio dengue virus Pan-E NS1 early enzyme-linked immunosorbent assay (ELISA), second generation (Alere, Australia); (ii) the Panbio dengue virus IgM capture ELISA (Alere, Australia); (iii) the Panbio dengue virus IgG capture ELISA (Alere, Australia); (iv) the Standard Diagnostics dengue virus NS1 antigen ELISA (Standard Diagnostics, South Korea); (v) the Standard Diagnostics dengue virus IgM ELISA (Standard Diagnostics, South Korea); (vi) the Standard Diagnostics dengue virus IgG ELISA (Standard Diagnostics, South Korea); and (vii) the Platelia NS1 antigen ELISA (Bio-Rad, France). Samples from 239 Thai patients confirmed to be dengue virus positive and 98 Sri Lankan patients negative for dengue virus infection were tested. The sensitivities and specificities of the NS1 antigen ELISAs ranged from 45 to 57% and 93 to 100% and those of the IgM antibody ELISAs ranged from 85 to 89% and 88 to 100%, respectively. Combining the NS1 antigen and IgM antibody results from the Standard Diagnostics ELISAs gave the best compromise between sensitivity and specificity (87 and 96%, respectively), as well as providing the best sensitivity for patients presenting at different times after fever onset. The Panbio IgG capture ELISA correctly classified 67% of secondary dengue infection cases. This study provides strong evidence of the value of combining dengue virus antigen- and antibody-based test results in the ELISA format for the diagnosis of acute dengue infection.


2019 ◽  
pp. 40-47
Author(s):  
Reni Herman

Dengue infection is an endemic disease in the tropics and subtropics, caused by dengue virus (DENV) infection. Some compounds have been shown to have antiviral effects on some viruses. In silico study is conducted to predict the stability of natural ingredient compounds: artemisinin, catechin, mangiferin, epigallocatechin gallate (EGCG), and quercetin in their interactions with dengue virus proteins at molecular level. This study is carried out using the 2008 version of the Molecular Operating Environment (MOE) software. Ligands are ribavirin as antiviral control whereas artemisinin, mangiferin, EGCG, and quercetin with 3D mole format structures. The downloaded DENV protein with PDB document format is the DENV serotype 2 envelope protein with 1OKE code, non structural protein 3 (NS3) with 2VBC code and NS5 protein with 1L9K code. In silico test generally showed that catechin, mangiferin, EGCG, and quercetin had more stable docking ligands to DENV’s proteins. In particular, mangiferin had stable docking ligand to envelope proteins, NS3 (helicase and protease) and in NS5-methyltransferase compared to ribavirin. Catechin stabled on NS3-protease, EGCG on NS3 (helicase and protease) and quercetin on NS3-protease. Artemisinin had less stabled bonds than ribavirin. The results indicated that catechin, mangiferin, EGCG, and quercetin had potential inhibition to DENV proteins whereas mangiferin was the most potential compound to inhibit dengue virus protein targets.


Sign in / Sign up

Export Citation Format

Share Document