High Durability Molded Lens Connector for SMFs

Author(s):  
Akihiro Nakama ◽  
Hirotaka Asada ◽  
Akito Nishimura
Keyword(s):  
Alloy Digest ◽  
1991 ◽  
Vol 40 (12) ◽  

Abstract TACTIX 740 resin offers high durability for hot melt adhesives. TACTIX 741, an acetone solution of TACTIX 740, is designed for composites prepared by solution prepregging. This datasheet provides information on composition and physical properties. Filing Code: P-32. Producer or source: The Dow Chemical Company, Dow Plastics.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 695 ◽  
Author(s):  
Mengjie Zhang ◽  
Wenchang Zhu ◽  
Xingzhe Yang ◽  
Meng Feng ◽  
Hongbin Feng

Few-layer exfoliated black phosphorus (Ex-BP) has attracted tremendous attention owing to its promising applications, including in electrocatalysis. However, it remains a challenge to directly use few-layer Ex-BP as oxygen-involved electrocatalyst because it is quite difficult to restrain structural degradation caused by spontaneous oxidation and keep it stable. Here, a robust carbon-stabilization strategy has been implemented to prepare carbon-coated Ex-BP/N-doped graphene nanosheet (Ex-BP/NGS@C) nanostructures at room temperature, which exhibit superior oxygen evolution reaction (OER) activity under alkaline conditions. Specifically, the as-synthesized Ex-BP/NGS@C hybrid presents a low overpotential of 257 mV at a current density of 10 mA cm−2 with a small Tafel slope of 52 mV dec−1 and shows high durability after long-term testing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bolatbek Dossanov ◽  
Vitaliy Trofimchuk ◽  
Vassiliy Lozovoy ◽  
Sergey Khmyzov ◽  
Assem Dossanova ◽  
...  

AbstractThe work aimed to evaluate the effectiveness of the developed distraction system based on the rod external monolateral fixation mechanisms by comparing it with the classical technique of long tubular bones distraction based on the circular multi-axial system. The study included patients with a genetically confirmed diagnosis of achondroplasia. The experimental group consisted of 14 patients who underwent surgical limb lengthening by the rod monolateral external fixator with a distraction system developed by the authors. The lengthening was performed on 28 segments of tubular bones. The majority of the experimental group patients achieved the lengthening value close to the planned one and the deformation correction. The fixation period was averagely 83.8 ± 3.7 days, the regenerate length was 8.5 ± 0.6 cm, and the mechanical strength of the distraction regenerate was 10.3° ± 2.18°. The rod external fixator with a control distraction system developed by the authors has small dimensions and low weight of the external supporting elements of high durability. It is reported to provide a good psychological tolerance of the treatment process and significantly outperforms the circular multi-axis system. Considering the aforementioned, the proposed apparatus can grant good orthopedic care to patients with achondroplasia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yujian Song ◽  
Tao Chen ◽  
Ronghong Cui ◽  
Yuting He ◽  
Xianghong Fan ◽  
...  

AbstractSensors for structural health monitoring (SHM) need to be permanently integrated on structures and withstand the harsh service environments, which has been a big challenge for the application of SHM in aircrafts. This paper focuses on the durability of flexible eddy current array (FECA) sensors in harsh service environments of aircrafts, including vibration environment and several typical exposed environments. First, a kind of FECA sensor is illustrated and its integration method is proposed. Moreover, in order to study the durability of the sensor in vibration environment, the modal analysis is performed by the finite element method. According to the simulation results, the durability experiment in vibration environment is carried out under the fourth order vibration mode, which makes the sensor suffer the harshest vibration loads. During the vibration experiment, output signals of the sensor keep stable and the sensor is well bonded to the structure, which shows the integrated sensor has high durability in vibration environment. Finally, the durability of integrated sensors is separately tested in three exposed environments, including salt fog corrosion environment, fluid immersion environment, as well as hygrothermal and ultraviolet-radiation environment. After these environmental exposure experiments, all sensors are well bonded to structures and can effectively monitor fatigue cracks, which shows great durability. Therefore, FECA sensors can survive in harsh service environments of aircrafts, which provides important support for the engineering applications of FECA sensors.


2018 ◽  
Vol 199 ◽  
pp. 09001
Author(s):  
Renaud Franssen ◽  
Serhan Guner ◽  
Luc Courard ◽  
Boyan Mihaylov

The maintenance of large aging infrastructure across the world creates serious technical, environmental, and economic challenges. Ultra-high performance fibre-reinforced concretes (UHPFRC) are a new generation of materials with outstanding mechanical properties as well as very high durability due to their extremely low permeability. These properties open new horizons for the sustainable rehabilitation of aging concrete structures. Since UHPFRC is a young and evolving material, codes are still either lacking or incomplete, with recent design provisions proposed in France, Switzerland, Japan, and Australia. However, engineers and public agencies around the world need resources to study, model, and rehabilitate structures using UHPFRC. As an effort to contribute to the efficient use of this promising material, this paper presents a new numerical modelling approach for UHPFRC-strengthened concrete members. The approach is based on the Diverse Embedment Model within the global framework of the Disturbed Stress Field Model, a smeared rotating-crack formulation for 2D modelling of reinforced concrete structures. This study presents an adapted version of the DEM in order to capture the behaviour of UHPFRC by using a small number of input parameters. The model is validated with tension tests from the literature and is then used to model UHPFRC-strengthened elements. The paper will discuss the formulation of the model and will provide validation studies with various tests of beams, columns and walls from the literature. These studies will demonstrate the effectiveness of the proposed modelling approach.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Benzion Amoyav ◽  
Yoel Goldstein ◽  
Eliana Steinberg ◽  
Ofra Benny

Microfluidics research for various applications, including drug delivery, cell-based assays and biomedical research has grown exponentially. Despite this technology’s enormous potential, drawbacks include the need for multistep fabrication, typically with lithography. We present a one-step fabrication process of a microfluidic chip for drug dissolution assays based on a 3D printing technology. Doxorubicin porous and non-porous microspheres, with a mean diameter of 250µm, were fabricated using a conventional “batch” or microfluidic method, based on an optimized solid-in-oil-in-water protocol. Microspheres fabricated with microfluidics system exhibited higher encapsulation efficiency and drug content as compared with batch formulations. We determined drug release profiles of microspheres in varying pH conditions using two distinct dissolution devices that differed in their mechanical barrier structures. The release profile of the “V” shape barrier was similar to that of the dialysis sac test and differed from the “basket” barrier design. Importantly, a cytotoxicity test confirmed biocompatibility of the printed resin. Finally, the chip exhibited high durability and stability, enabling multiple recycling sessions. We show how the combination of microfluidics and 3D printing can reduce costs and time, providing an efficient platform for particle production while offering a feasible cost-effective alternative to clean-room facility polydimethylsiloxane-based chip microfabrication.


Sign in / Sign up

Export Citation Format

Share Document