Control of spectral shift, broadening and pulse compression during mid-IR self-guiding in high-pressure gases and their mixtures

2022 ◽  
Author(s):  
Fedor Potemkin ◽  
Ekaterina Migal ◽  
Andrey Pushkin ◽  
Nikita Minaev ◽  
Boris Bravy
2017 ◽  
Vol 45 (8) ◽  
pp. 2358-2365 ◽  
Author(s):  
Mathew D. G. Evans ◽  
Valentin J. P. Baillard ◽  
Pablo D. G. Maqueo ◽  
Jeffrey M. Bergthorson ◽  
Sylvain Coulombe

2006 ◽  
Vol 8 (19) ◽  
pp. 2257-2264 ◽  
Author(s):  
Kimitaka Minami ◽  
Masamichi Mizuta ◽  
Muneyuki Suzuki ◽  
Takafumi Aizawa ◽  
Kunio Arai

2017 ◽  
Vol 1 (2) ◽  
pp. 71
Author(s):  
S. J. Rzoska ◽  
E. Rosiak ◽  
M. Rutkowska ◽  
A. Drozd-Rzoska ◽  
A. Wesolowska ◽  
...  

<p><em>The current state of studies on the high pressure preservation of the human milk is briefly presented. It is indicated that reaching (i) the antimicrobial safety, (ii) antiviral safety, and (iii) high nutritional, metabolic and immunological quality, may be difficult for a “classical” single pressure pulse High Pressure Preservation (HPP) treatment. It is shown that the sudden decompression leads to additional physical processes, which can be important for supporting the HPP technology. Additional advantages were reached due to the two-pulse compression, with subsequent values: P = 200 MPa and 400 MPa. Tests included the microbiological insight for the two-weeks storage. It is also shown that the decay of the number of microorganisms under the high pressure follows the relation n(t) = n<sub>0</sub>exp(At)exp(Bt<sup>2</sup>). Finally, issues regarding containers for the high pressure preservation of human milk are discussed.</em></p>


1991 ◽  
Vol 46 (9-10) ◽  
pp. 717-724 ◽  
Author(s):  
S. Schneider ◽  
Th. Wokusch ◽  
H. Tiltscher ◽  
R. Fischer ◽  
H. Scheer

Abstract The behaviour of monomers and trimers of C-phycocyanin and allophycocyanin under high pressure is studied by UV-VIS absorption spectroscopy. It is found that fast variations of pressure (Δp ≥ 500 bar) and/or temperature are accompanied by significant changes in the absorption spectra (intensity and/or spectral shift). The induced differences disappear, however, in part, when the samples are left for several minutes at the final pressure (relaxation effect). The observed spectral variations are different from those connected with a change in state of aggregation and could therefore be due to small modifications of the chromophore-protein arrangement.


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
Robert Corbett ◽  
Delbert E. Philpott ◽  
Sam Black

Observation of subtle or early signs of change in spaceflight induced alterations on living systems require precise methods of sampling. In-flight analysis would be preferable but constraints of time, equipment, personnel and cost dictate the necessity for prolonged storage before retrieval. Because of this, various tissues have been stored in fixatives and combinations of fixatives and observed at various time intervals. High pressure and the effect of buffer alone have also been tried.Of the various tissues embedded, muscle, cartilage and liver, liver has been the most extensively studied because it contains large numbers of organelles common to all tissues (Fig. 1).


Author(s):  
R.E. Crang ◽  
M. Mueller ◽  
K. Zierold

Obtaining frozen-hydrated sections of plant tissues for electron microscopy and microanalysis has been considered difficult, if not impossible, due primarily to the considerable depth of effective freezing in the tissues which would be required. The greatest depth of vitreous freezing is generally considered to be only 15-20 μm in animal specimens. Plant cells are often much larger in diameter and, if several cells are required to be intact, ice crystal damage can be expected to be so severe as to prevent successful cryoultramicrotomy. The very nature of cell walls, intercellular air spaces, irregular topography, and large vacuoles often make it impractical to use immersion, metal-mirror, or jet freezing techniques for botanical material.However, it has been proposed that high-pressure freezing (HPF) may offer an alternative to the more conventional freezing techniques, inasmuch as non-cryoprotected specimens may be frozen in a vitreous, or near-vitreous state, to a radial depth of at least 0.5 mm.


Author(s):  
William P. Sharp ◽  
Robert W. Roberson

The aim of ultrastructural investigation is to analyze cell architecture and relate a functional role(s) to cell components. It is known that aqueous chemical fixation requires seconds to minutes to penetrate and stabilize cell structure which may result in structural artifacts. The use of ultralow temperatures to fix and prepare specimens, however, leads to a much improved preservation of the cell’s living state. A critical limitation of conventional cryofixation methods (i.e., propane-jet freezing, cold-metal slamming, plunge-freezing) is that only a 10 to 40 μm thick surface layer of cells can be frozen without distorting ice crystal formation. This problem can be allayed by freezing samples under about 2100 bar of hydrostatic pressure which suppresses the formation of ice nuclei and their rate of growth. Thus, 0.6 mm thick samples with a total volume of 1 mm3 can be frozen without ice crystal damage. The purpose of this study is to describe the cellular details and identify potential artifacts in root tissue of barley (Hordeum vulgari L.) and leaf tissue of brome grass (Bromus mollis L.) fixed and prepared by high-pressure freezing (HPF) and freeze substitution (FS) techniques.


Author(s):  
E. F. Koch

Because of the extremely rigid lattice structure of diamond, generating new dislocations or moving existing dislocations in diamond by applying mechanical stress at ambient temperature is very difficult. Analysis of portions of diamonds deformed under bending stress at elevated temperature has shown that diamond deforms plastically under suitable conditions and that its primary slip systems are on the ﹛111﹜ planes. Plastic deformation in diamond is more commonly observed during the high temperature - high pressure sintering process used to make diamond compacts. The pressure and temperature conditions in the sintering presses are sufficiently high that many diamond grains in the sintered compact show deformed microtructures.In this report commercially available polycrystalline diamond discs for rock cutting applications were analyzed to study the deformation substructures in the diamond grains using transmission electron microscopy. An individual diamond particle can be plastically deformed in a high pressure apparatus at high temperature, but it is nearly impossible to prepare such a particle for TEM observation, since any medium in which the diamond is mounted wears away faster than the diamond during ion milling and the diamond is lost.


Author(s):  
Peter Pegler ◽  
N. David Theodore ◽  
Ming Pan

High-pressure oxidation of silicon (HIPOX) is one of various techniques used for electrical-isolation of semiconductor-devices on silicon substrates. Other techniques have included local-oxidation of silicon (LOCOS), poly-buffered LOCOS, deep-trench isolation and separation of silicon by implanted oxygen (SIMOX). Reliable use of HIPOX for device-isolation requires an understanding of the behavior of the materials and structures being used and their interactions under different processing conditions. The effect of HIPOX-related stresses in the structures is of interest because structuraldefects, if formed, could electrically degrade devices.This investigation was performed to study the origin and behavior of defects in recessed HIPOX (RHIPOX) structures. The structures were exposed to a boron implant. Samples consisted of (i) RHlPOX'ed strip exposed to a boron implant, (ii) recessed strip prior to HIPOX, but exposed to a boron implant, (iii) test-pad prior to HIPOX, (iv) HIPOX'ed region away from R-HIPOX edge. Cross-section TEM specimens were prepared in the <110> substrate-geometry.


Sign in / Sign up

Export Citation Format

Share Document