scholarly journals Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering

2016 ◽  
Vol 6 (2) ◽  
pp. 540 ◽  
Author(s):  
Zih-Ying Yang ◽  
Yi-Hsun Chen ◽  
Bo-Huei Liao ◽  
Kuo-Ping Chen
Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 579
Author(s):  
Donglin Ma ◽  
Qiaoyuan Deng ◽  
Huaiyuan Liu ◽  
Yongxiang Leng

Titanium nitride (Ti-N) thin films are electrically and thermally conductive and have high hardness and corrosion resistance. Dense and defect-free Ti-N thin films have been widely used in the surface modification of cutting tools, wear resistance components, medical implantation devices, and microelectronics. In this study, Ti-N thin films were deposited by high power pulsed magnetron sputtering (HPPMS) and their plasma characteristics were analyzed. The ion energy of Ti species was varied by adjusting the substrate bias voltage, and its effect on the microstructure, residual stress, and adhesion of the thin films were studied. The results show that after the introduction of nitrogen gas, a Ti-N compound layer was formed on the surface of the Ti target, which resulted in an increase in the Ti target discharge peak power. In addition, the total flux of the Ti species decreased, and the ratio of the Ti ions increased. The Ti-N thin film deposited by HPPMS was dense and defect-free. When the energy of the Ti ions was increased, the grain size and surface roughness of the Ti-N film decreased, the residual stress increased, and the adhesion strength of the Ti-N thin film decreased.


2013 ◽  
Vol 690-693 ◽  
pp. 1702-1706 ◽  
Author(s):  
Shuang Jun Nie ◽  
Hao Geng ◽  
Jun Bao Wang ◽  
Lai Sen Wang ◽  
Zhen Wei Wang ◽  
...  

NiZn-ferrite thin films were deposited onto silicon and glass substrates by radio frequency magnetron sputtering at room temperature. The effects of the relative oxygen flow ratio on the structure and magnetic properties of the thin films were investigated. The study results reveal that the films deposited under higher relative oxygen flow ratio show a better crystallinity. Static magnetic measurement results indicated that the saturation magnetization of the films was greatly affected by the crystallinity, grain dimension, and cation distribution in the NiZn-ferrite films. The NiZn-ferrite thin films with a maximum saturation magnetization of 151 emucm-3, which is about 40% of the bulk NiZn ferrite, was obtained under relative oxygen flow ratio of 60%.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1228
Author(s):  
Marcin Winnicki ◽  
Artur Wiatrowski ◽  
Michał Mazur

High Power Impulse Magnetron Sputtering (HiPIMS) was used for deposition of indium tin oxide (ITO) transparent thin films at low substrate temperature. A hybrid-type composite target was self-prepared by low-pressure cold spraying process. Prior to spraying In2O3 and oxidized Sn powders were mixed in a volume ratio of 3:1. Composite In2O3/Sn coating had a mean thickness of 900 µm. HiPIMS process was performed in various mixtures of Ar:O2: (i) 100:0 vol.%, (ii) 90:10 vol.%, (iii) 75:25 vol.%, (iv) 50:50 vol.%, and (v) 0:100 vol.%. Oxygen rich atmosphere was necessary to oxidize tin atoms. Self-design, simple high voltage power switch capable of charging the 20 µF capacitor bank from external high voltage power supply worked as a power supply for an unbalanced magnetron source. ITO thin films with thickness in the range of 30–40 nm were obtained after 300 deposition pulses of 900 V and deposition time of 900 s. The highest transmission of 88% at λ = 550 nm provided 0:100 vol. % Ar:O2 mixture, together with the lowest resistivity of 0.03 Ω·cm.


Author(s):  
Wuttichai Phae-ngam ◽  
Tossaporn Lertvanithphol ◽  
Chanunthorn Chananonnawathorn ◽  
Rattanachai Kowong ◽  
Mati Horprathum ◽  
...  

2015 ◽  
Vol 1792 ◽  
Author(s):  
Jiantuo Gan ◽  
Augustinas Galeckas ◽  
Vishnukanthan Venkatachalapathy ◽  
Heine N. Riise ◽  
Bengt G. Svensson ◽  
...  

ABSTRACTCuxO thin films have been deposited on a quartz substrate by reactive radio frequency (rf) magnetron sputtering at different target powers Pt (140-190 W) while keeping other growth process parameters fixed. Room-temperature photoluminescence (PL) measurements indicate considerable improvement of crystallinity for the films deposited at Pt>170 W, with most pronounced excitonic features being observed in the film grown using Pt=190 W. These results corroborate well with the surface morphology of the films, which was found more flat, smooth and homogeneous for Pt >170 W films in comparison with those deposited at lower powers.


2007 ◽  
Vol 561-565 ◽  
pp. 1161-1164
Author(s):  
Xiao Na Li ◽  
Bing Hu ◽  
Chuang Dong ◽  
Xin Jiang

Fe/Si multi-layer films were fabricated on Si (100) substrates utilizing radio frequency magnetron sputtering system. Si/β-FeSi2 structure was found in the films after the deposition. Structural characterization of Fe-silicide sample was performed by transmission electron microscopy, to explore the dependence of the microstructure of β-FeSi2 film on the preparation parameters. It was found that β-FeSi2 particles were formed after the deposition without annealing, whose size is less than 20nm ,with a direct band-gap of 0.94eV in room temperature. After annealing at 850°C, particles grow lager, however the stability of thin films was still good.


Sign in / Sign up

Export Citation Format

Share Document