scholarly journals Deterministic control of thin film thickness in physical vapor deposition systems using a multi-aperture mask

2005 ◽  
Vol 13 (7) ◽  
pp. 2731 ◽  
Author(s):  
John Arkwright ◽  
Ian Underhill ◽  
Nathan Pereira ◽  
Mark Gross
Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 325 ◽  
Author(s):  
Ben Wang ◽  
Xiuhua Fu ◽  
Shigeng Song ◽  
Hin Chu ◽  
Desmond Gibson ◽  
...  

Optimization of thin film uniformity is an important aspect for large-area coatings, particularly for optical coatings where error tolerances can be of the order of nanometers. Physical vapor deposition is a widely used technique for producing thin films. Applications include anti-reflection coatings, photovoltaics etc. This paper reviews the methods and simulations used for improving thin film uniformity in physical vapor deposition (both evaporation and sputtering), covering characteristic aspects of emission from material sources, projection/mask effects on film thickness distribution, as well as geometric and rotational influences from apparatus configurations. Following the review, a new program for modelling and simulating thin film uniformity for physical vapor deposition was developed using MathCAD. Results from the program were then compared with both known theoretical analytical equations of thickness distribution and experimental data, and found to be in good agreement. A mask for optimizing thin film thickness distribution designed using the program was shown to improve thickness uniformity from ±4% to ±0.56%.


Carbon ◽  
2021 ◽  
Vol 178 ◽  
pp. 506-514
Author(s):  
Meiyu He ◽  
Jiayue Han ◽  
Xingwei Han ◽  
Jun Gou ◽  
Ming Yang ◽  
...  

2020 ◽  
Vol 102 (21) ◽  
Author(s):  
Stephan Geprägs ◽  
Björn Erik Skovdal ◽  
Monika Scheufele ◽  
Matthias Opel ◽  
Didier Wermeille ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4056
Author(s):  
José Javier Imas ◽  
Carlos R. Zamarreño ◽  
Ignacio del Villar ◽  
Ignacio R. Matías

A fiber Bragg grating patterned on a SnO2 thin film deposited on the flat surface of a D-shaped polished optical fiber is studied in this work. The fabrication parameters of this structure were optimized to achieve a trade-off among reflected power, full width half maximum (FWHM), sensitivity to the surrounding refractive index (SRI), and figure of merit (FOM). In the first place, the influence of the thin film thickness, the cladding thickness between the core and the flat surface of the D-shaped fiber (neck), and the length of the D-shaped zone over the reflected power and the FWHM were assessed. Reflected peak powers in the range from −2 dB to −10 dB can be easily achieved with FWHM below 100 pm. In the second place, the sensitivity to the SRI, the FWHM, and the FOM were analyzed for variations of the SRI in the 1.33–1.4 range, the neck, and the thin-film thickness. The best sensitivities theoretically achieved for this device are next to 40 nm/RIU, while the best FOM has a value of 114 RIU−1.


2019 ◽  
Vol 682 ◽  
pp. 109-120 ◽  
Author(s):  
Wjatscheslaw Sakiew ◽  
Stefan Schrameyer ◽  
Marco Jupé ◽  
Philippe Schwerdtner ◽  
Nick Erhart ◽  
...  

2005 ◽  
Vol 297-300 ◽  
pp. 1446-1451 ◽  
Author(s):  
Takeshi Kasuya ◽  
Hideto Suzuki

The fatigue strength of TiAl intermetallic alloy coated with TiAlN film was studied in vacuum at 1073K using a SEM-servo testing machine. In addition, three kinds of TiAlN films were given by physical vapor deposition (1, 3, and 10μ m). The fatigue strength of 3μ m was highest. Also, the fatigue strength of 1μ m was lowest. From this result, existence of optimum film thickness was suggested because the difference of fatigue strength arose in each film thickness. The justification for existence of optimum film thickness is competition of 45-degree crack and 90-degree crack. The 45-degree crack is phenomenon seen in the thin film (1μ m), and is caused by plastic deformation of TiAl substrate. The 45-degree crack is the factor of the fatigue strength fall by the side of thin film. In contrast, the 90-degree crack is phenomenon in the thick film (10μ m), and is caused as result of reaction against load to film. The 90-degree crack is the factor of the fatigue strength fall by the side of thick film. In conclusion, the optimum film thickness can perform meso fracture control, and improves fatigue strength.


2012 ◽  
Vol 1 (1) ◽  
pp. 46 ◽  
Author(s):  
Amir Mahyar Khorasani ◽  
Mohammad Reza Solymany yazdi ◽  
Mehdi Faraji ◽  
Alex Kootsookos

Thin-film coating plays a prominent role on the manufacture of many industrial devices. Coating can increase material performance due to the deposition process. Having adequate and precise model that can predict the hardness of PVD and CVD processes is so helpful for manufacturers and engineers to choose suitable parameters in order to obtain the best hardness and decreasing cost and time of industrial productions. This paper proposes the estimation of hardness of titanium thin-film layers as protective industrial tools by using multi-layer perceptron (MLP) neural network. Based on the experimental data that was obtained during the process of chemical vapor deposition (CVD) and physical vapor deposition (PVD), the modeling of the coating variables for predicting hardness of titanium thin-film layers, is performed. Then, the obtained results are experimentally verified and very accurate outcomes had been attained.


Sign in / Sign up

Export Citation Format

Share Document