Measurement of the Temperature and Partial Pressure of a Uranium Plasma

1970 ◽  
Vol 24 (2) ◽  
pp. 253-258 ◽  
Author(s):  
R. T. Schneider ◽  
A. G. Randol ◽  
G. R. Shipman

The generation of a high-pressure uranium plasma is described. Determinations of temperature, uranium-II, and electron pressure are performed. The Boltzmann plot technique and the single-line, relative-intensity method are used. Radial distributions of the measured quantities across the plasma are given. Plasma temperature as a function of power input and pressure is measured. These temperatures range between 7900 and 10 300 K. Uranium partial pressures between 0.1 and 1.0 atm are deduced.

1941 ◽  
Vol 41 (3) ◽  
pp. 225-249 ◽  
Author(s):  
E. M. Case ◽  
J. B. S. Haldane

We confirm the finding of Behnke,et al.(1935) that air at 8·6 atm. pressure has a somewhat intoxicating effect on human beings, and that this effect is due to nitrogen. The nitrogen effect reaches its maximum after about 3 min. There was no reduction of manual dexterity in the test used by us, but a considerable effect on performance of arithmetic, and on most practical activities. At 10 atm. these effects were somewhat enhanced, and manual dexterity was lowered in some cases. When helium or hydrogen was substituted for nitrogen there was no intoxication.3–4% of carbon dioxide at atmospheric pressure caused no deterioration in manual or arithmetical skill, and in the two subjects tested, 6% of carbon dioxide caused no deterioration.When air containing about 0·4% of carbon dioxide, and therefore with a partial pressure of about 4%, was breathed at 10 atm., there was a marked deterioration in manual dexterity, and a good deal of confusion. When breathing carbon dioxide at partial pressures of 6·6–9·7% at 10. atm., eight subjects lost consciousness in 1–5 min., but some could tolerate partial pressures of over 8% for 5 min. or more. With half an hour's exposure to a partial pressure of 6–7% of carbon dioxide, one subject lost consciousness after 7 min. at 10 atm. pressure, and another nearly did so.We consider that the percentage of carbon dioxide in air at 10 atm. pressure should be kept below 0·3%. Exposure to high partial pressures of carbon dioxide at 10 atm. does not increase the liability to ‘bends’ or other symptoms due to rapid decompression.Immersion in water below 40° F. did not enhance the effects of high-pressure air, or of carbon dioxide at atmospheric pressure, but somewhat enhanced those of high pressure and carbon dioxide together.In certain breathing apparatus the resistance became so great at 10 atm. as to be intolerable.Few subjects experienced serious trouble during compression, or during or after decompression. But one developed a unilateral pneumothorax.


1987 ◽  
Vol 62 (2) ◽  
pp. 421-428
Author(s):  
R. W. Brauer ◽  
J. A. Dutcher ◽  
W. Hinson ◽  
W. S. Vorus

Exposure of CD-1 mice to subanesthetic partial pressures of N2O (0.5 atm) or N2 (10–20 atm) for periods up to 14 days results in up to 40% decreases in the mean threshold pressure eliciting type I high-pressure neurological syndrome (HPNS) seizures, and in increases up to 38% in the N2 partial pressure producing anesthesia. For all combinations of preexposure time, N2 partial pressure, as well as identity of the conditioning gas the relations between the convulsion threshold pressure (Pc) and the anesthesia N2 pressure (Pa) appear to be uniquely correlated by the equation Pa = 54.5 –0.2(Pc - 60)1.2. The potency of N2O with respect to these habituation phenomena is between 28 and 33 times higher than that of N2, depending on the aspects compared. Evidence is presented indicating that after 14 days of habituation the animals have attained between 75 and 85% compensation for the anesthetic as well as the anticonvulsant effects of the conditioning gas. The bearing of the results on the problem of the nature of the antagonism between inert gas narcotic agents and high pressure and on the hypothesis that habituation tends toward restoration of isofluidity (or some analogous normalization process) are discussed.


2020 ◽  
pp. 000370282097304
Author(s):  
Amal A. Khedr ◽  
Mahmoud A. Sliem ◽  
Mohamed Abdel-Harith

In the present work, nanoparticle-enhanced laser-induced breakdown spectroscopy was used to analyze an aluminum alloy. Although LIBS has numerous advantages, it suffers from low sensitivity and low detection limits compared to other spectrochemical analytical methods. However, using gold nanoparticles helps to overcome such drawbacks and enhances the LIBS sensitivity in analyzing aluminum alloy in the current work. Aluminum was the major element in the analyzed samples (99.9%), while magnesium (Mg) was the minor element (0.1%). The spread of gold nanoparticles onto the Al alloy and using a laser with different pulse energies were exploited to enhance the Al alloy spectral lines. The results showed that Au NPs successfully improved the alloy spectral lines intensity by eight times, which could be useful for detecting many trace elements in higher matrix alloys. Under the assumption of local thermodynamic equilibrium, the Boltzmann plot was used to calculate the plasma temperature. Besides, the electron density was calculated using Mg and H lines at Mg(I) at 285.2 nm and Hα(I) at 656.2 nm, respectively. Three-dimensional contour mapping and color fill images contributed to understanding the behavior of the involved effects.


2014 ◽  
Vol 789 ◽  
pp. 466-470
Author(s):  
Qing Hao Shi ◽  
Bing Ying Wang ◽  
Bin Zhao

The corrosion mechanism of organic silicon modified polyurea composite coating under different CO2 partial pressures was studied using high-temperature autoclave, combined with scanning electron microscopy (SEM), adhesion tests and electrochemical impedance spectroscopy (EIS) technology. The experimental results showed that: there was no corrosion product formed on the surface of coating sample after high-temperature high-pressure corrosion test, and with the increasing of CO2 partial pressure, the coating adhesion and impedance values decline increases. Moreover CO2 partial pressure increases accelerated the failure process of polyurea composite coating system.


1986 ◽  
Vol 71 ◽  
Author(s):  
G.J. Van Der Kolk ◽  
M.J. Verkerk

AbstractAl was evaporated at oxygen partial pressures, PO2, varying between 10−7 and 10−4 Pa on substrates of silicon nitride. The substrate temperature was varied between 20 °C and 250°C. The films were annealed at temperatures up to 500°C.For Al films deposited at 20°C, it was found that the average grain size decreases with increasing oxygen partial pressure. After annealing recrystallization was observed. The relative increase of grain size was less for higher values of pO2. Annealing gave rise to a broad grain size distribution.For Al films deposited at 250°C, the presence of oxygen caused the growth of rough inhomogeneous films. This inhomogeneous structure remained during annealing.


1998 ◽  
Vol 13 (12) ◽  
pp. 3580-3586 ◽  
Author(s):  
A. L. Crossley ◽  
J. L. MacManus-Driscoll

A detailed study has been made of the control and optimization of partial melting of dipcoated Bi2Sr2Ca1Cu2O8+δAg0.1 (Bi-2212) tapes using reduced oxygen partial pressures. A coulometric titration technique has been employed to vary the oxygen partial pressure in a region of the phase diagram corresponding to binary melting, and the amount of partial melting has been quantified. Using this information, tapes have been processed using both isothermal and isobaric techniques. An optimum processing route was determined which combined isothermal and isobaric processes. Highly aligned material at the point of optimum melting was obtained.


1985 ◽  
Vol 58 (4) ◽  
pp. 1143-1147 ◽  
Author(s):  
F. L. Powell ◽  
F. A. Lopez ◽  
P. D. Wagner

We have detected acetone in several brands of heparin. If uncorrected, this leads to errors in measuring acetone in blood collected in heparinized syringes, as in the multiple inert gas elimination technique for measuring ventilation-perfusion ratio (VA/Q) distributions. Error for acetone retention [R = arterial partial pressure-to-mixed venous partial pressure (P-V) ratio] is usually small, because R is normally near 1.0, and the error is similar in arterial and mixed venous samples. However, acetone excretion [E = mixed expired partial pressure (P-E)-to-P-V ratio] will appear erroneously low, because P-E is accurately measured in dry syringes, but P-V is overestimated. A physical model of a homogeneous alveolar lung at room temperature and without dead space shows: the magnitude of acetone E error depends upon the ratio of blood sample to heparinized saline volumes and acetone partial pressures, without correction, acetone E can be less than that of less soluble gases like ether, a situation incompatible with conventional gas exchange theory, and acetone R and E can be correctly calculated using the principle of mass balance if the acetone partial pressure in heparinized saline is known. Published data from multiple inert gas elimination experiments with acetone-free heparin, in our labs and others, are within the limits of experimental error. Thus the hypothesis that acetone E is anomalously low because of physiological mechanisms involving dead space tissue capacitance for acetone remains to be tested.


2017 ◽  
Vol 11 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Mirjana Novakovic ◽  
Maja Popovic ◽  
Zlatko Rakocevic ◽  
Natasa Bibic

The properties of various CrxNy films grown by direct current (DC) reactive sputtering process with different values of nitrogen partial pressures (0, 2?10-4, 3.5?10-4 and 5?10-4 mbar) were studied. The structural analysis of the samples was performed by using X-ray diffraction and transmission electron microscopy (TEM), while an elemental analysis was realized by means of Rutherford backscattering spectrometry. By varying nitrogen partial pressure the pure Cr layer, mixture of Cr, Cr2N and CrN phases, or single-phase CrN was produced. TEM analysis showed that at pN2 = 2?10-4 mbar the layer has dense microstructure. On the other hand, the layer deposited at the highest nitrogen partial pressure exhibits pronounced columnar structure. The optical properties of CrxNy films were evaluated from spectroscopic ellipsometry data by the Drude or combined Drude and Tauc-Lorentz model. It was found that both refractive index and extinction coefficient are strongly dependent on the dominant phase formation (Cr, Cr2N, CrN) during the deposition process. Finally, the electrical studies indicated the metallic character of Cr2N phase and semiconducting behaviour of CrN.


2005 ◽  
Vol 475-479 ◽  
pp. 1333-1336 ◽  
Author(s):  
Jan Ji Sha ◽  
J.S. Park ◽  
Tatsuya Hinoki ◽  
Akira Kohyama ◽  
J. Yu

Three kinds of atmospheres (air, highly-pure Ar and ultra highly-pure Ar gas) with different oxygen partial pressures were applied to investigate the tensile properties and creep behavior of SiC fibers such as Hi-NicalonTM and TyrannoTM-SA. These fibers were annealed and crept at elevated temperatures ranging from1273-1773 K in such environments. After annealing at 1773 K, the room temperature tensile strengths of SiC-based fibers decreased with decreasing the oxygen partial pressure and the near stoichiometric fiber TyrannoTM-SA shows excellent strength retention. At temperatures above the 1573 K, the creep resistance of SiC fibers evaluated by bending stress relaxation (BSR) method under high oxygen partial pressure was lower than that of in low oxygen partial pressure. The microstructural features on these fibers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


Sign in / Sign up

Export Citation Format

Share Document