Controlled partial melting during isobaric and isothermal processing of dipcoated Bi-2212/Ag tapes

1998 ◽  
Vol 13 (12) ◽  
pp. 3580-3586 ◽  
Author(s):  
A. L. Crossley ◽  
J. L. MacManus-Driscoll

A detailed study has been made of the control and optimization of partial melting of dipcoated Bi2Sr2Ca1Cu2O8+δAg0.1 (Bi-2212) tapes using reduced oxygen partial pressures. A coulometric titration technique has been employed to vary the oxygen partial pressure in a region of the phase diagram corresponding to binary melting, and the amount of partial melting has been quantified. Using this information, tapes have been processed using both isothermal and isobaric techniques. An optimum processing route was determined which combined isothermal and isobaric processes. Highly aligned material at the point of optimum melting was obtained.

1989 ◽  
Vol 156 ◽  
Author(s):  
M. Tetenbaum ◽  
L. Curtiss ◽  
B. Czech ◽  
B. Tani ◽  
M. Blander

ABSTRACTThe nonstoichiometric and thermodynamic behavior of the YBa2Cu3Ox system as a function of oxygen partial pressure and temperature is being investigated by means of a coulometric titration technique. The oxygen content of the superconductor can be varied coulometrically by well-defined small amounts and the equilibrium partial pressures determined from the EMF. The oxygen stoichiometry in YBa2Cu3Ox as a function of oxygen partial pressure shows a change of curvature around x = 6.55–6.75 and an inflection around x ≅ 6.65 at temperatures between 400–500°C. These new low temperature data are consistent with the presence of a miscibility gap at lower temperatures, which is similar to that postulated in several theoretical papers.


1986 ◽  
Vol 71 ◽  
Author(s):  
G.J. Van Der Kolk ◽  
M.J. Verkerk

AbstractAl was evaporated at oxygen partial pressures, PO2, varying between 10−7 and 10−4 Pa on substrates of silicon nitride. The substrate temperature was varied between 20 °C and 250°C. The films were annealed at temperatures up to 500°C.For Al films deposited at 20°C, it was found that the average grain size decreases with increasing oxygen partial pressure. After annealing recrystallization was observed. The relative increase of grain size was less for higher values of pO2. Annealing gave rise to a broad grain size distribution.For Al films deposited at 250°C, the presence of oxygen caused the growth of rough inhomogeneous films. This inhomogeneous structure remained during annealing.


2005 ◽  
Vol 475-479 ◽  
pp. 1333-1336 ◽  
Author(s):  
Jan Ji Sha ◽  
J.S. Park ◽  
Tatsuya Hinoki ◽  
Akira Kohyama ◽  
J. Yu

Three kinds of atmospheres (air, highly-pure Ar and ultra highly-pure Ar gas) with different oxygen partial pressures were applied to investigate the tensile properties and creep behavior of SiC fibers such as Hi-NicalonTM and TyrannoTM-SA. These fibers were annealed and crept at elevated temperatures ranging from1273-1773 K in such environments. After annealing at 1773 K, the room temperature tensile strengths of SiC-based fibers decreased with decreasing the oxygen partial pressure and the near stoichiometric fiber TyrannoTM-SA shows excellent strength retention. At temperatures above the 1573 K, the creep resistance of SiC fibers evaluated by bending stress relaxation (BSR) method under high oxygen partial pressure was lower than that of in low oxygen partial pressure. The microstructural features on these fibers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


Author(s):  
Koji Kosuge

In this chapter, we describe four kinds of non-stoichiometric compound, which are or will be in practical use, from the viewpoint of preparation methods or utility. As a first example, the solid electrolyte (ZrO2)0.85(CaO)0.15 is described, which are discussed in Sections 1.4.6–1.4.8 from the viewpoint of basic characteristics. The second example is the magnetic material Mn–Zn ferrite, for which the control of non-stoichiometry and the manufacturing process will be described. Then the metal hydrides or hydrogen absorbing alloys, which are one of the most promising materials for storing and transporting hydrogen in the solid state, are described, mainly focusing on the phase relation. Finally, we describe the relation between the control of composition and the growth of a single crystal of the semiconductive compound GaAs, which is expected to give electronic materials for 1C and LSI etc. Solid electrolytes, which show ionic conductivity in the solid state, are considered to be potential materials for practical use, some are already used as mentioned below. Solid electrolytes have characteristic functions, such as electromotive force, ion selective transmission, and ion omnipresence. Here we describe the practical use of calcia stabilized zirconia (CSZ), (ZrO2)0.85(CaO)0.15, the structure and basic properties of which are discussed in detail in Sections 1.4.5–1.4.8. The most simple practical application of CSZ is for the gauge of oxygen partial pressure, as mentioned in Sections 1.4.7 and 1.4.8. The oxygen partial pressure P2o2 in the closed system as shown in Fig. 3.1 can be measured, taking the air as the standard oxygen pressure P1o2. The electromotive force (EMF) of this concentration cell is expressed as . . . E = (RT/4F)ln(P1o2/ P2o2) . . . This principle is applied in the measurement of oxygen partial pressure in laboratory experiments and of the oxygen activity of slag in refineries. Based on the principle of coulometric titration (see Section 1.4.8), the oxygen partial pressure of a closed system can be kept constant by feedback of the EMF, in the oxygen pressure range 1 to 10−7 atm. By use of this closed system, investigations on redox reactions of metals and also enzyme reactions have been carried out.


1981 ◽  
Vol 36 (10) ◽  
pp. 1211-1214 ◽  
Author(s):  
W. Laqua

Abstract If a NiTiO3 poly crystal is exposed to an oxygen-potential gradient -established by the simultaneous action of two different oxygen partial pressures -it will be decomposed into its component oxides NiO and TiO2 despite the fact, that the compound is stable at both the lower and the higher oxygen partial pressure. A quantitative explanation of this phenomenon will be given below.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
P. Narayana Reddy ◽  
A. Sreedhar ◽  
M. Hari Prasad Reddy ◽  
S. Uthanna ◽  
J. F. Pierson

Silver-copper-oxide thin films were formed by RF magnetron sputtering technique using Ag80Cu20target at various oxygen partial pressures in the range 5 × 10−3–8 ×10−2 Pa and substrate temperatures in the range 303–523 K. The effect of oxygen partial pressure and substrate temperature on the structure and surface morphology and electrical and optical properties of the films were studied. The Ag-Cu-O films formed at room temperature (303 K) and at low oxygen partial pressure of 5 × 10−3 Pa were mixed phase of Ag2Cu2O3and Ag, while those deposited at 2 × 10−2 Pa were composed of Ag2Cu2O4and Ag2Cu2O3phases. The crystallinity of the films formed at oxygen partial pressure of 2 × 10−2Pa increased with the increase of substrate temperature from 303 to 423 K. Further increase of substrate temperature to 523 K, the films were decomposed in to Ag2O and Ag phases. The electrical resistivity of the films decreased from 0.8 Ωcm with the increase of substrate temperature from 303 to 473 K due to improvement in the crystallinity of the phase. The optical band gap of the Ag-Cu-O films increased from 1.47 to 1.83 eV with the increase of substrate temperature from 303 to 473 K.


1991 ◽  
Vol 243 ◽  
Author(s):  
Chi Kong Kwok ◽  
Seshu B. Desu

AbstractThe properties of ferroelectric thin films can be significantly influenced by the presence of point defects. The concentration of vacancies presented in these thin films is known to be one of the key parameters causing the degradation of these films when these films are subjected to polarization reversals.To study the effects of the vacancy concentration on the ferroelectric properties, sol gel PZT films and powders were annealed in different oxygen partial pressures. For the PZT films, the reduction of oxides to pure metals was not observed even with films annealed at 2×10−5 atmosphere of oxygen partial pressure. Samples annealed at low oxygen partial pressure (for instance, 10−3 and 2×10−5 atmosphere), which has more Pb and O2 depletions and consequently has more Pb and O2 vacancies, cannot be switched easily. The ratios of coercive field after and before fatigue increase as the defect concentrations of the annealed samples increase.


2003 ◽  
Vol 789 ◽  
Author(s):  
Chandana Rath ◽  
A. Pinyol ◽  
J. Farjas ◽  
P. Roura ◽  
E. Bertran

ABSTRACTWe report silicon nitride whisker formation from hydrogenated amorphous silicon (a-Si:H) nanoparticles grown by PECVD for the first time. We compared the results with the kinetics of whisker formation from ball milled crystalline silicon (c-Si) microparticles. Whisker formation is analyzed at different temperatures (900–1440 °C) and oxygen partial pressures. At temperatures equal or above 1350 C and at low oxygen partial pressure we observe monocrystalline α-Si3N4 whiskers having 30–100 nm diameter and several microns length. By increasing the oxygen partial pressure, the structure of whiskers is completely changed, as shown by electron microscopy. In this case we observe α-Si3N4 whiskers covered by an amorphous silica layer at 1350 C. Finally, when the precursor material is silicon microparticles, thicker (170–330 nm) and longer whiskers are formed.


1991 ◽  
Vol 251 ◽  
Author(s):  
Yuichi Sawai ◽  
K. Ishizaki ◽  
M. Takata ◽  
A. Kuzjukevics ◽  
Y. Narukawa

ABSTRACTThe oxygen partial pressure - temperature phase diagram of YBCO type superconductors reported before by us showed that the YBa2Cu4Ox phase formation from Y2Ba4Cu7Oz with CuO, as well as from YBa2Cu3Oy, with CuO are oxidation reactions. The total gas pressure - temperature phase diagram shows that the YBa2Cu4Ox, phase formation temperature from Y2Ba4Cu7Oz with CuO increases with increasing the total gas pressure. On this phase boundary line, the fugacity of oxygen increases with increasing the total gas pressure even at constant oxygen partial pressure.


1972 ◽  
Vol 18 (7) ◽  
pp. 1119-1128 ◽  
Author(s):  
D. Brewer ◽  
J. M. Duncan ◽  
S. Safe ◽  
A. Taylor

Aspergillus fumigatus, Mucor rouxii, and Sporormia minima have been isolated from the rumen contents of sheep grazing permanent pasture at Nappan, Nova Scotia. To determine the ability of these fungi to survive and grow at the low oxygen partial pressure present in the rumen, a method of determination of oxygen, nitrogen, and carbon dioxide has been developed. The lowest partial pressures of oxygen [Formula: see text] and nitrogen that could be detected were 0.0005 cm Hg and the precision of the determination was ±0.001 cm Hg. Carbon dioxide was determined with slightly less precision than achieved for oxygen and nitrogen. Using this method, respiration was detected in cultures of all the fungi named at [Formula: see text] Hg and growth was observed at [Formula: see text] Hg in the case of M. rouxii. It is concluded that all these fungi are capable of survival in the ovine rumen.


Sign in / Sign up

Export Citation Format

Share Document