Detection of Atmospheric Pollutants at Parts-per-Billion Levels by Infrared Spectroscopy

1973 ◽  
Vol 27 (3) ◽  
pp. 188-198 ◽  
Author(s):  
Philip L. Hanst ◽  
Allen S. Lefohn ◽  
Bruce W. Gay

Infrared detection of air pollutants has been extended to the parts-per-billion sensitivity range. The increased detection sensitivity results from the use of the scanning Michelson interferometer, cooled solid state detectors, the fast minicomputer, and the multiple pass long path cell. Forming ratios of spectra with the aid of the computer extracts obscure information and minimizes the interferences of atmospheric water and carbon dioxide. Almost all of the significant gaseous pollutants can be measured by the method described, even at concentrations smaller than one part pollutant to one billion parts air.

2021 ◽  
Vol 31 (Supplement_2) ◽  
Author(s):  
Ana Ferreira ◽  
António Loureiro ◽  
Silvia Seco ◽  
João Paulo Figueiredo ◽  
Susana Paixão ◽  
...  

Abstract Background In auto paint workshops there are several chemical, physical and biological agents that are harmful to health, making it essential to guarantee the well-being and safety of workers. In this sense, the assessment of the Indoor Air Quality (IAQ) of these places, in an associated context of occupational health, proves to be important. Methods The present study had as main objective to evaluate the occupational exposure of workers in an automobile painting workshop to particles and air pollutants. The data collection consisted of the evaluation of air quality, using for this purpose, the assessment of atmospheric pollutants carbon monoxide (CO), carbon dioxide (CO2), Volatile Organic Compounds (VOC), formaldehyde (CH2O), carbon dioxide sulfur (SO2), nitrogen dioxide (NO2), hydrogen sulfide (H2S) and particulate matter (PM2.5, PM10, breathable and inhalable particles) and the meteorological variables temperature and relative humidity. The collected data was processed using the statistical software IBM SPSS version 27.0. The interpretation of the statistical tests was performed with a 95% confidence level for a maximum random error up to 5%. Results We found that the concentrations of inhalable particles recorded in some workstations exceeded the legally established exposure limit value. Conclusions IAQ should be a priority concern for the government and for all professionals working in the area of Occupational Health and Safety having in mind the implementation of measures that promote the continuous improvement of the IAQ of the facilities, thus guaranteeing a good assessment and monitoring of workstations, preventing atmospheric pollutants from reaching concentrations that could put workers' health at risk.


2018 ◽  
Vol 25 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Marta Marszałek ◽  
Zygmunt Kowalski ◽  
Agnieszka Makara

Abstract Pig slurry is classified as a natural liquid fertilizer, which is a heterogeneous mixture of urine, faeces, remnants of feed and technological water, used to remove excrement and maintain the hygiene of livestock housing. The storage and distribution of pig slurry on farmland affect the environment as they are associated with, among others, the emission of various types of gaseous pollutants, mainly CH4, CO2, N2O, NH3, H2S, and other odorants. Methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) are greenhouse gases (GHGs) which contribute to climate change by increasing the greenhouse effect. Ammonia (NH3) and hydrogen sulfide (H2S) are malodorous gases responsible for the occurrence of odour nuisance which, due to their toxicity, may endanger the health and lives of humans and animals. NH3 also influences the increase of atmosphere and soil acidification. The article presents the environmental impact of greenhouse gases and odorous compounds emitted from pig slurry. Key gaseous atmospheric pollutants such as NH3, H2S, CH4, CO2 and N2O have been characterized. Furthermore, methods to reduce the emission of odours and GHGs from pig slurry during its storage and agricultural usage have been discussed.


2013 ◽  
Vol 1 (3) ◽  
pp. 157-167 ◽  

A climatological analysis of atmospheric concentrations of primary air pollutants in Athens, Greece, is presented for the 11-year period 1987-1997, since the automated local air pollution network operating by the Ministry of Environment started to record all conventional pollutants. The concentration levels of the atmospheric pollutants carbon monoxide, nitrogen oxides, sulfur dioxide and black smoke for the most polluted stations (Patission, Athinas and Piraeus) of the air pollution network were examined. For all primary pollutants a seasonal variation with minimum in summer and maximum in winter is observed. Sulfur dioxide has the strongest seasonal cycle and black smoke the weakest. There is a significant downward trend for almost all pollutants in all stations. The highest reductions are observed in Patission where a comparison between the 3-year periods 1988-1990 and 1995-1997 gives 52%, 34%, 26% and 20% decreases for sulfur dioxide, carbon monoxide, nitrogen oxides and black smoke, respectively. The pollution abatement measures taken by the state authorities during the period 1990-1994, mainly consisting in the replacement of the old technology gasoline-powered private cars and the reduction of the sulfur content in diesel oil, seem to be the primary cause of the improvement in air quality in Athens during the recent years.


2017 ◽  
Vol 2 (1) ◽  
pp. 43
Author(s):  
Rajenda Kumar Soni ◽  
Santosh Kumar Sar ◽  
Shweta Singh

A material that has the ability to extract certain substances from gases, liquids, or solids by causing them to adhere to its surface without changing the physical properties of the adsorbent. Rapid urbanization, population growth, industrial expansion and waste generation from domestic and industrial sources have rendered waste which are hazardous to man and other living resources. Plants absorb carbon dioxide and supply us with oxygen in the process of photosynthesis. At the same time, they reduce pollutants in water and soil. They also remove significant amounts of gaseous pollutants and particles from the air. The microscopic plants in soil also reduce air pollutants and degrade many toxic chemicals that enter the soil.


1980 ◽  
Vol 194 (1) ◽  
pp. 357-364
Author(s):  
R. M. Harrison ◽  
H. A. McCartney

The construction and operation of an automated mobile laboratory for continuous air pollutant monitoring are described. The gaseous pollutants sulphur dioxide, nitric oxide, nitrogen dioxide and ozone are monitored continuously, whilst particulate pollutants are collected for subsequent wet chemical analysis. Gaseous pollutant concentrations together with measurements of wind direction and speed and solar radiation are recorded continuously in both analogue and digital form. The problems inherent in siting and operating the mobile laboratory are discussed and the analysis of monitoring data is illustrated with reference to a recent survey carried out in the vicinity of an ammonium nitrate fertilizer works.


2015 ◽  
Vol 719-720 ◽  
pp. 238-242
Author(s):  
Xiong Wan

Working in the corrosive environment for a long time, it is easy for metal pipes to produce stress corrosion cracks which will affect the use. An infrared detection method combining permeate treatment with heat-incentive steam is proposed to detect surface cracks, which then has been verified by simulations and experiments. For the simulation, pipe model including four cracks of different depth and width was constructed by ANSYS. Transient thermal analysis was made after convection incentive loaded on internal and external wall in the case of whether or not undergo surface infiltration processing. For the experiment, pipe including cracks were made the same as simulation parameters, then experiments were made using the thermal excitation system in two cases. Surface temperature distributions of the pipe were compared in two cases, the results of the study show that penetration treatment before heat incentive can significantly improve the surface crack detection sensitivity.


Measurement ◽  
2021 ◽  
Vol 185 ◽  
pp. 110061
Author(s):  
Sneha Gautam ◽  
Cyril Sammuel ◽  
Aniket Bhardwaj ◽  
Zahra Shams Esfandabadi ◽  
M. Santosh ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 116
Author(s):  
Mascia Benedusi ◽  
Elena Frigato ◽  
Cristiano Bertolucci ◽  
Giuseppe Valacchi

Circadian rhythms are 24-h oscillations driven by a hypothalamic master oscillator that entrains peripheral clocks in almost all cells, tissues and organs. Circadian misalignment, triggered by industrialization and modern lifestyles, has been linked to several pathological conditions, with possible impairment of the quality or even the very existence of life. Living organisms are continuously exposed to air pollutants, and among them, ozone or particulate matters (PMs) are considered to be among the most toxic to human health. In particular, exposure to environmental stressors may result not only in pulmonary and cardiovascular diseases, but, as it has been demonstrated in the last two decades, the skin can also be affected by pollution. In this context, we hypothesize that chronodistruption can exacerbate cell vulnerability to exogenous damaging agents, and we suggest a possible common mechanism of action in deregulation of the homeostasis of the pulmonary, cardiovascular and cutaneous tissues and in its involvement in the development of pathological conditions.


2018 ◽  
Vol 10 (8) ◽  
pp. 2900 ◽  
Author(s):  
Ştefan Gherghina ◽  
Mihaela Onofrei ◽  
Georgeta Vintilă ◽  
Daniel Armeanu

This paper examines the nexus between the main forms of transport, related investments, specific air pollutants, and sustainable economic growth. The research is important since transport may act as a facilitator of social, economic, and environmental development. Based on data retrieved from Eurostat, Organisation for Economic Co-operation and Development (OECD), and World Bank, the output of fixed-effects regressions for EU-28 countries over 1990–2016 reveals that road, inland waterways, maritime, and air transport infrastructure positively influence gross domestic product per capita (GDPC), though a negative link occurred in the case of railway transport. As concerning investments in transport infrastructure, the empirical results exhibit a positive impact on economic growth for every type of transport, except inland waterways. Besides, emissions of CO2 from all kind of transport, alongside other specific air pollutants, negatively influence GDPC. The fully modified and dynamic ordinary least squares panel estimation results reinforce the findings. Further, in the short-run, Granger causality based on panel vector error correction model pointed out a unidirectional causal link running from sustainable economic growth to inland waterways and maritime transport of goods, albeit a one-way causal link running from the volume of goods transported by air to GDPC. As well, the empirical results provide support one-way short-run links running from GDPC to investments in road and inland waterway transport infrastructure. In addition, a bidirectional short-run link occurred between carbon dioxide emissions from railway transport and GDPC, whereas unidirectional relations with economic growth were identified in the case of carbon dioxide emissions from road and domestic aviation. In the long-run, a bidirectional causal relation was noticed between the length of the railways lines, investments in railway transport infrastructure, and GDPC, as well as a two-way causal link between the gross weight of seaborne goods handled in ports and GDPC.


2020 ◽  
Vol 12 (4) ◽  
pp. 2411-2421 ◽  
Author(s):  
Robbie M. Andrew

Abstract. India is the world's third-largest emitter of carbon dioxide and is developing rapidly. While India has pledged an emissions-intensity reduction as its contribution to the Paris Agreement, the country does not regularly report emissions statistics, making tracking progress difficult. Moreover, all estimates of India's emissions in global datasets represent its financial year, which is not aligned to the calendar year used by almost all other countries. Here I compile monthly energy and industrial activity data allowing for the estimation of India's CO2 emissions by month and calendar year with a short lag. Emissions show clear seasonal patterns, and the series allows for the investigation of short-lived but highly significant events, such as the near-record monsoon in 2019 and the COVID-19 crisis in 2020. Data are available at https://doi.org/10.5281/zenodo.3894394 (Andrew, 2020a).


Sign in / Sign up

Export Citation Format

Share Document