scholarly journals Correction: Novel Role of NOX in Supporting Aerobic Glycolysis in Cancer Cells with Mitochondrial Dysfunction and as a Potential Target for Cancer Therapy

PLoS Biology ◽  
2017 ◽  
Vol 15 (12) ◽  
pp. e1002616 ◽  
Author(s):  
Weiqin Lu ◽  
Yumin Hu ◽  
Gang Chen ◽  
Zhao Chen ◽  
Hui Zhang ◽  
...  
2021 ◽  
Vol 165 ◽  
pp. 54
Author(s):  
Patricia de la Cruz-Ojeda ◽  
M. Ángeles Rodríguez-Hernández ◽  
Elena Navarro-Villarán ◽  
Paloma Gallego ◽  
Pavla Staňková ◽  
...  

2021 ◽  
Author(s):  
Wooram Park ◽  
Seok-Jo Kim ◽  
Paul Cheresh ◽  
Jeanho Yun ◽  
Byeongdu Lee ◽  
...  

Mitochondria are crucial regulators of the intrinsic pathway of cancer cell death. The high sensitivity of cancer cells to mitochondrial dysfunction offers opportunities for emerging targets in cancer therapy. Herein,...


2021 ◽  
Vol 49 (2) ◽  
pp. 815-827
Author(s):  
Giancarlo Solaini ◽  
Gianluca Sgarbi ◽  
Alessandra Baracca

In the last two decades, IF1, the endogenous inhibitor of the mitochondrial F1Fo-ATPase (ATP synthase) has assumed greater and ever greater interest since it has been found to be overexpressed in many cancers. At present, several findings indicate that IF1 is capable of playing a central role in cancer cells by promoting metabolic reprogramming, proliferation and resistance to cell death. However, the mechanism(s) at the basis of this pro-oncogenic action of IF1 remains elusive. Here, we recall the main features of the mechanism of the action of IF1 when the ATP synthase works in reverse, and discuss the experimental evidence that support its relevance in cancer cells. In particular, a clear pro-oncogenic action of IF1 is to avoid wasting of ATP when cancer cells are exposed to anoxia or near anoxia conditions, therefore favoring cell survival and tumor growth. However, more recently, various papers have described IF1 as an inhibitor of the ATP synthase when it is working physiologically (i.e. synthethizing ATP), and therefore reprogramming cell metabolism to aerobic glycolysis. In contrast, other studies excluded IF1 as an inhibitor of ATP synthase under normoxia, providing the basis for a hot debate. This review focuses on the role of IF1 as a modulator of the ATP synthase in normoxic cancer cells with the awareness that the knowledge of the molecular action of IF1 on the ATP synthase is crucial in unravelling the molecular mechanism(s) responsible for the pro-oncogenic role of IF1 in cancer and in developing related anticancer strategies.


Biomedicines ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 270 ◽  
Author(s):  
Gabriela Reyes-Castellanos ◽  
Rawand Masoud ◽  
Alice Carrier

Cancer cells reprogram their metabolism to meet bioenergetics and biosynthetic demands. The first observation of metabolic reprogramming in cancer cells was made a century ago (“Warburg effect” or aerobic glycolysis), leading to the classical view that cancer metabolism relies on a glycolytic phenotype. There is now accumulating evidence that most cancers also rely on mitochondria to satisfy their metabolic needs. Indeed, the current view of cancer metabolism places mitochondria as key actors in all facets of cancer progression. Importantly, mitochondrial metabolism has become a very promising target in cancer therapy, including for refractory cancers such as Pancreatic Ductal AdenoCarcinoma (PDAC). In particular, mitochondrial oxidative phosphorylation (OXPHOS) is an important target in cancer therapy. Other therapeutic strategies include the targeting of glutamine and fatty acids metabolism, as well as the inhibition of the TriCarboxylic Acid (TCA) cycle intermediates. A better knowledge of how pancreatic cancer cells regulate mitochondrial metabolism will allow the identification of metabolic vulnerabilities and thus novel and more efficient therapeutic options for the benefit of each patient.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1137 ◽  
Author(s):  
Sung Wook Son ◽  
Gia Cac Chau ◽  
Seong-Tae Kim ◽  
Sung Hee Um

The vacuolar H+-adenosine triphosphatase (ATPase) subunit V0C (ATP6V0C), a proton-conducting, pore-forming subunit of vacuolar ATPase, maintains pH homeostasis and induces organelle acidification. The intracellular and extracellular pH of cancer cells affects their growth; however, the role of ATP6V0C in highly invasive esophageal cancer cells (ECCs) remains unclear. In this study, we examined the role of ATP6V0C in glucose metabolism in ECCs. The ATP6V0C depletion attenuated ECC proliferation, invasion, and suppressed glucose metabolism, as indicated by reduced glucose uptake and decreased lactate and adenosine triphosphate (ATP) production in cells. Consistent with this, expression of glycolytic enzyme and the extracellular acidification rate (ECAR) were also decreased by ATP6V0C knockdown. Mechanistically, ATP6V0C interacted with pyruvate kinase isoform M2 (PKM2), a key regulator of glycolysis in ECCs. The ATP6V0C depletion reduced PKM2 phosphorylation at tyrosine residue 105 (Tyr105), leading to inhibition of nuclear translocation of PKM2. In addition, ATP6V0C was recruited at hypoxia response element (HRE) sites in the lactate dehydrogenase A (LDHA) gene for glycolysis. Thus, our data suggest that ATP6V0C enhances aerobic glycolysis and motility in ECCs.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Hyun Ah Seo ◽  
Sokviseth Moeng ◽  
Seokmin Sim ◽  
Hyo Jeong Kuh ◽  
Soo Young Choi ◽  
...  

The susceptibility of cancer cells to different types of treatments can be restricted by intrinsic and acquired therapeutic resistance, leading to the failure of cancer regression and remission. To overcome this problem, a combination therapy has been proposed as a fundamental strategy to improve therapeutic responses; however, resistance is still unavoidable. MicroRNA (miRNAs) are associated with cancer therapeutic resistance. The modulation of dysregulated miRNA levels through miRNA-based therapy comprising a replacement or inhibition approach has been proposed to sensitize cancer cells to other anti-cancer therapies. The combination of miRNA-based therapy with other anti-cancer therapies (miRNA-based combinatorial cancer therapy) is attractive, due to the ability of miRNAs to target multiple genes associated with the signaling pathways controlling therapeutic resistance. In this article, we present an overview of recent findings on the role of therapeutic resistance-related miRNAs in different types of cancer. We review the feasibility of utilizing dysregulated miRNAs in cancer cells and extracellular vesicles as potential candidates for miRNA-based combinatorial cancer therapy. We also discuss innate properties of miRNAs that need to be considered for more effective combinatorial cancer therapy.


Proceedings ◽  
2020 ◽  
Vol 40 (1) ◽  
pp. 45
Author(s):  
Apar Pataer

The role of RNA-dependent protein kinase R (PKR) and its association with misfolded protein expression in cancer cells are unclear. Herein we report that PKR regulates misfolded protein clearance by preventing it release through exosomes and promoting lysosomal degradation of misfolded prion proteins in cancer cells. We demonstrated that PKR contributes to the lysosome function and regulates misfolded prion protein clearance. We hypothesized that PKR-associated lysosome function is critical for cancer but not normal cell survival, representing an effective approach for highly targeted cancer therapy. In screening a compound library, we identified two PKR-associated compound 1 did not affect normal cells but selectively induced cell death in cancer cells depending on their PKR expression status. Pac 1 significantly inhibited the growth of human lung and breast xenograft tumors in mice with no toxicity. Pac 1 binds to PI4K2A and disrupts the PKR/PI4K2A associated lysosome complex, contributing to destabilization of cancer cell lysosomes and triggering cell death. We observed that PKR and PI4K2A play significant prognostic roles in breast cancer patients. These results demonstrate that targeting of a PI4K2A/PKR lysosome complex may be an effective approach for cancer therapy.


2019 ◽  
Vol 2 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Ming Chen ◽  
Jiaoti Huang

Abstract Cancer cells undergo metabolic reprogramming to support cell proliferation, growth, and dissemination. Alterations in lipid metabolism, and specifically the uptake and synthesis of fatty acids (FAs), comprise one well-documented aspect of this reprogramming. Recent studies have revealed an expanded range of roles played by FA in promoting the aggressiveness of cancer while simultaneously identifying new potential targets for cancer therapy. This article provides a brief review of these advances in our understanding of FA metabolism in cancer, highlighting both recent discoveries and the inherent challenges caused by the metabolic plasticity of cancer cells in targeting lipid metabolism for cancer therapy.


Oncogene ◽  
2019 ◽  
Vol 39 (4) ◽  
pp. 801-813 ◽  
Author(s):  
Apar Pataer ◽  
Bulent Ozpolat ◽  
RuPing Shao ◽  
Neil R. Cashman ◽  
Steven S. Plotkin ◽  
...  

Abstract The role of RNA-dependent protein kinase R (PKR) and its association with misfolded protein expression in cancer cells are unclear. Herein we report that PKR regulates misfolded protein clearance by preventing it release through exosomes and promoting lysosomal degradation of misfolded prion proteins in cancer cells. We demonstrated that PKR contributes to the lysosome function and regulates misfolded prion protein clearance. We hypothesized that PKR-associated lysosome function is critical for cancer but not normal cell survival, representing an effective approach for highly targeted cancer therapy. In screening a compound library, we identified two PKR-associated compounds 1 and 2 (Pac 1 and 2) did not affect normal cells but selectively induced cell death in cancer cells depending on their PKR expression status. Pac 1 significantly inhibited the growth of human lung and breast xenograft tumors in mice with no toxicity. Pac 1 binds to PI4K2A and disrupts the PKR/PI4K2A-associated lysosome complex, contributing to destabilization of cancer cell lysosomes and triggering cell death. We observed that PKR and PI4K2A play significant prognostic roles in breast cancer patients. These results demonstrate that targeting of a PI4K2A/PKR lysosome complex may be an effective approach for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document