scholarly journals Targeted modification of the Per2 clock gene alters circadian function in mPer2luciferase (mPer2Luc) mice

2021 ◽  
Vol 17 (5) ◽  
pp. e1008987
Author(s):  
Martin R. Ralph ◽  
Shu-qun Shi ◽  
Carl H. Johnson ◽  
Pavel Houdek ◽  
Tenjin C. Shrestha ◽  
...  

Modification of the Per2 clock gene in mPer2Luc reporter mice significantly alters circadian function. Behavioral period in constant dark is lengthened, and dissociates into two distinct components in constant light. Rhythms exhibit increased bimodality, enhanced phase resetting to light pulses, and altered entrainment to scheduled feeding. Mechanistic mathematical modelling predicts that enhanced protein interactions with the modified mPER2 C-terminus, combined with differential clock regulation among SCN subregions, can account for effects on circadian behavior via increased Per2 transcript and protein stability. PER2::LUC produces greater suppression of CLOCK:BMAL1 E-box activity than PER2. mPer2Luc carries a 72 bp deletion in exon 23 of Per2, and retains a neomycin resistance cassette that affects rhythm amplitude but not period. The results show that mPer2Luc acts as a circadian clock mutation illustrating a need for detailed assessment of potential impacts of c-terminal tags in genetically modified animal models.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea Bogutzki ◽  
Natalie Naue ◽  
Lidia Litz ◽  
Andreas Pich ◽  
Ute Curth

Abstract During DNA replication in E. coli, a switch between DnaG primase and DNA polymerase III holoenzyme (pol III) activities has to occur every time when the synthesis of a new Okazaki fragment starts. As both primase and the χ subunit of pol III interact with the highly conserved C-terminus of single-stranded DNA-binding protein (SSB), it had been proposed that the binding of both proteins to SSB is mutually exclusive. Using a replication system containing the origin of replication of the single-stranded DNA phage G4 (G4ori) saturated with SSB, we tested whether DnaG and pol III can bind concurrently to the primed template. We found that the addition of pol III does not lead to a displacement of primase, but to the formation of higher complexes. Even pol III-mediated primer elongation by one or several DNA nucleotides does not result in the dissociation of DnaG. About 10 nucleotides have to be added in order to displace one of the two primase molecules bound to SSB-saturated G4ori. The concurrent binding of primase and pol III is highly plausible, since even the SSB tetramer situated directly next to the 3′-terminus of the primer provides four C-termini for protein-protein interactions.


PLoS Genetics ◽  
2005 ◽  
Vol preprint (2007) ◽  
pp. e33
Author(s):  
Hee-Kyung Hong ◽  
Jason L. Chong ◽  
Weimin Song ◽  
Eun Joo Song ◽  
Amira A. Jyawook ◽  
...  

2004 ◽  
Vol 15 (7) ◽  
pp. 3393-3405 ◽  
Author(s):  
Markus Geisler ◽  
Marjolaine Girin ◽  
Sabine Brandt ◽  
Vincent Vincenzetti ◽  
Sonia Plaza ◽  
...  

Previously, the immunophilin-like protein TWD1 from Arabidopsis has been demonstrated to interact with the ABC transporters AtPGP1 and its closest homologue, AtPGP19. Physiological and biochemical investigation of pgp1/pgp19 and of twd1 plants suggested a regulatory role of TWD1 on AtPGP1/AtPGP19 transport activities. To further understand the dramatic pleiotropic phenotype that is caused by loss-of-function mutation of the TWD1 gene, we were interested in other TWD1 interacting proteins. AtMRP1, a multidrug resistance-associated (MRP/ABCC)-like ABC transporter, has been isolated in a yeast two-hybrid screen. We demonstrate molecular interaction between TWD1 and ABC transporters AtMRP1 and its closest homologue, AtMRP2. Unlike AtPGP1, AtMRP1 binds to the C-terminal tetratricopeptide repeat domain of TWD1, which is well known to mediate protein-protein interactions. Domain mapping proved that TWD1 binds to a motif of AtMRP1 that resembles calmodulin-binding motifs; and calmodulin binding to the C-terminus of MRP1 was verified. By membrane fractionation and GFP-tagging, we localized AtMRP1 to the central vacuolar membrane and the TWD1-AtMRP1 complex was verified in vivo by coimmunoprecipitation. We were able to demonstrate that TWD1 binds to isolated vacuoles and has a significant impact on the uptake of metolachlor-GS and estradiol-β-glucuronide, well-known substrates of vacuolar transporters AtMRP1 and AtMRP2.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 207 ◽  
Author(s):  
Stephen R. Johnson ◽  
Hillary G. Rikli

Research in toxinology has created a pharmacological paradox. With an estimated 220,000 venomous animals worldwide, the study of peptidyl toxins provides a vast number of effector molecules. However, due to the complexity of the protein-protein interactions, there are fewer than ten venom-derived molecules on the market. Structural characterization and identification of post-translational modifications are essential to develop biological lead structures into pharmaceuticals. Utilizing advancements in mass spectrometry, we have created a high definition approach that fuses conventional high-resolution MS-MS with ion mobility spectrometry (HDMSE) to elucidate these primary structure characteristics. We investigated venom from ten species of “tiger” spider (Genus: Poecilotheria) and discovered they contain isobaric conformers originating from non-enzymatic Asp isomerization. One conformer pair conserved in five of ten species examined, denominated PcaTX-1a and PcaTX-1b, was found to be a 36-residue peptide with a cysteine knot, an amidated C-terminus, and isoAsp33Asp substitution. Although the isomerization of Asp has been implicated in many pathologies, this is the first characterization of Asp isomerization in a toxin and demonstrates the isomerized product’s diminished physiological effects. This study establishes the value of a HDMSE approach to toxin screening and characterization.


PLoS Genetics ◽  
2007 ◽  
Vol 3 (2) ◽  
pp. e33 ◽  
Author(s):  
Hee-Kyung Hong ◽  
Jason L Chong ◽  
Weimin Song ◽  
Eun Joo Song ◽  
Amira A Jyawook ◽  
...  

2019 ◽  
Vol 218 (3) ◽  
pp. 1011-1026 ◽  
Author(s):  
Nicole Scholz ◽  
Nadine Ehmann ◽  
Divya Sachidanandan ◽  
Cordelia Imig ◽  
Benjamin H. Cooper ◽  
...  

Information processing by the nervous system depends on neurotransmitter release from synaptic vesicles (SVs) at the presynaptic active zone. Molecular components of the cytomatrix at the active zone (CAZ) regulate the final stages of the SV cycle preceding exocytosis and thereby shape the efficacy and plasticity of synaptic transmission. Part of this regulation is reflected by a physical association of SVs with filamentous CAZ structures via largely unknown protein interactions. The very C-terminal region of Bruchpilot (Brp), a key component of the Drosophila melanogaster CAZ, participates in SV tethering. Here, we identify the conserved SNARE regulator Complexin (Cpx) in an in vivo screen for molecules that link the Brp C terminus to SVs. Brp and Cpx interact genetically and functionally. Both proteins promote SV recruitment to the Drosophila CAZ and counteract short-term synaptic depression. Analyzing SV tethering to active zone ribbons of cpx3 knockout mice supports an evolutionarily conserved role of Cpx upstream of SNARE complex assembly.


2009 ◽  
Vol 191 (8) ◽  
pp. 2815-2825 ◽  
Author(s):  
Mark D. Gonzalez ◽  
Jon Beckwith

ABSTRACT Cell division in bacteria requires the coordinated action of a set of proteins, the divisome, for proper constriction of the cell envelope. Multiple protein-protein interactions are required for assembly of a stable divisome. Within the Escherichia coli divisome is a conserved subcomplex of inner membrane proteins, the FtsB/FtsL/FtsQ complex, which is necessary for linking the upstream division proteins, which are predominantly cytoplasmic, with the downstream division proteins, which are predominantly periplasmic. FtsB and FtsL are small bitopic membrane proteins with predicted coiled-coil motifs, which themselves form a stable subcomplex that can recruit downstream division proteins independently of FtsQ; however, the details of how FtsB and FtsL interact together and with other proteins remain to be characterized. Despite the small size of FtsB, we identified separate interaction domains of FtsB that are required for interaction with FtsL and FtsQ. The N-terminal half of FtsB is necessary for interaction with FtsL and sufficient, when in complex with FtsL, for recruitment of downstream division proteins, while a portion of the FtsB C terminus is necessary for interaction with FtsQ. These properties of FtsB support the proposal that its main function is as part of a molecular scaffold to allow for proper formation of the divisome.


2020 ◽  
Vol 6 (42) ◽  
pp. eabb5202
Author(s):  
Shuai Wang ◽  
Yanke Lin ◽  
Feng Li ◽  
Zifei Qin ◽  
Ziyue Zhou ◽  
...  

We uncover a cycling and NF-κB–driven lncRNA (named Lnc-UC) that epigenetically modifies transcription of circadian clock gene Rev-erbα, thereby linking circadian clock to colitis. Cycling expression of Lnc-UC is generated by the central clock protein Bmal1 via an E-box element. NF-κB activation in experimental colitis transcriptionally drives Lnc-UC through direct binding to two κB sites. Lnc-UC ablation disrupts colonic expressions of clock genes in mice; particularly, Rev-erbα is down-regulated and its diurnal rhythm is blunted. Consistently, Lnc-UC promotes expression of Rev-erbα (a known dual NF-κB/Nlrp3 repressor) to inactivate NF-κB signaling and Nlrp3 inflammasome in macrophages. Furthermore, Lnc-UC ablation sensitizes mice to experimental colitis and abolishes the diurnal rhythmicity in disease severity. Mechanistically, Lnc-UC physically interacts with Cbx1 protein to reduce its gene silencing activity via H3K9me3, thereby enhancing Rev-erbα transcription and expression. In addition, we identify a human Lnc-UC that has potential to promote Rev-erbα expression and restrain inflammations.


1995 ◽  
Vol 311 (1) ◽  
pp. 219-224 ◽  
Author(s):  
T C Schulz ◽  
B Hopwood ◽  
P D Rathjen ◽  
J R Wells

The zinc finger is a protein domain that imparts specific nucleic acid-binding activity on a wide range of functionally important proteins. In this paper we report the molecular cloning and characterization of a novel murine zinc-finger gene, mZ13. Analysis of mZ13 cDNAs revealed that the gene expresses a 794-amino-acid protein encoded by a 2.7 kb transcript. The protein has an unusual arrangement of 13 zinc fingers into a ‘hand’ of 12 tandem fingers and a single isolated finger near the C-terminus. This structural organization is conserved with the probable chicken homologue, cZ13. mZ13 also contained an additional domain at the N-terminus which has previously been implicated in the regulation of zinc-finger transcription factor DNA-binding, via protein-protein interactions. mZ13 expression was detected in a wide range of murine embryonic and adult tissues. The structural organization of mZ13 and its expression profile suggest that it may function as a housekeeping DNA-binding protein that regulates the expression of specific genes.


1999 ◽  
Vol 10 (2) ◽  
pp. 329-344 ◽  
Author(s):  
Martin Dünnwald ◽  
Alexander Varshavsky ◽  
Nils Johnsson

The split-ubiquitin technique was used to detect transient protein interactions in living cells. Nub, the N-terminal half of ubiquitin (Ub), was fused to Sec62p, a component of the protein translocation machinery in the endoplasmic reticulum ofSaccharomyces cerevisiae. Cub, the C-terminal half of Ub, was fused to the C terminus of a signal sequence. The reconstitution of a quasi-native Ub structure from the two halves of Ub, and the resulting cleavage by Ub-specific proteases at the C terminus of Cub, serve as a gauge of proximity between the two test proteins linked to Nub and Cub. Using this assay, we show that Sec62p is spatially close to the signal sequence of the prepro-α-factor in vivo. This proximity is confined to the nascent polypeptide chain immediately following the signal sequence. In addition, the extent of proximity depends on the nature of the signal sequence. Cub fusions that bore the signal sequence of invertase resulted in a much lower Ub reconstitution with Nub-Sec62p than otherwise identical test proteins bearing the signal sequence of prepro-α-factor. An inactive derivative of Sec62p failed to interact with signal sequences in this assay. These in vivo findings are consistent with Sec62p being part of a signal sequence-binding complex.


Sign in / Sign up

Export Citation Format

Share Document