scholarly journals Complexin cooperates with Bruchpilot to tether synaptic vesicles to the active zone cytomatrix

2019 ◽  
Vol 218 (3) ◽  
pp. 1011-1026 ◽  
Author(s):  
Nicole Scholz ◽  
Nadine Ehmann ◽  
Divya Sachidanandan ◽  
Cordelia Imig ◽  
Benjamin H. Cooper ◽  
...  

Information processing by the nervous system depends on neurotransmitter release from synaptic vesicles (SVs) at the presynaptic active zone. Molecular components of the cytomatrix at the active zone (CAZ) regulate the final stages of the SV cycle preceding exocytosis and thereby shape the efficacy and plasticity of synaptic transmission. Part of this regulation is reflected by a physical association of SVs with filamentous CAZ structures via largely unknown protein interactions. The very C-terminal region of Bruchpilot (Brp), a key component of the Drosophila melanogaster CAZ, participates in SV tethering. Here, we identify the conserved SNARE regulator Complexin (Cpx) in an in vivo screen for molecules that link the Brp C terminus to SVs. Brp and Cpx interact genetically and functionally. Both proteins promote SV recruitment to the Drosophila CAZ and counteract short-term synaptic depression. Analyzing SV tethering to active zone ribbons of cpx3 knockout mice supports an evolutionarily conserved role of Cpx upstream of SNARE complex assembly.

2018 ◽  
Author(s):  
Nicole Scholz ◽  
Nadine Ehmann ◽  
Divya Sachidanandan ◽  
Cordelia Imig ◽  
Benjamin H. Cooper ◽  
...  

ABSTRACTInformation processing by the nervous system depends on the release of neurotransmitter from synaptic vesicles (SVs) at the presynaptic active zone. Molecular components of the cytomatrix at the active zone (CAZ) regulate the final stages of the SV cycle preceding exocytosis and thereby shape the efficacy and plasticity of synaptic transmission. Part of this regulation is reflected by a physical association of SVs with filamentous CAZ structures. However, our understanding of the protein interactions underlying SV tethering by the CAZ is far from complete. The very C-terminal region of Bruchpilot (Brp), a key component of the Drosophila CAZ, participates in SV tethering. Yet so far, no vesicular or cytoplasmic molecules have been reported to engage in an interaction with Brp’s C-terminus. Here, we carried out an in vivo screen for molecules that link the Brp C-terminus to SVs. This strategy identified the conserved SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor) regulator Complexin (Cpx) as a vesicular interaction partner of Brp. We show that Brp and Cpx interact genetically and functionally. Interfering with Cpx targeting to SVs mirrored distinctive features of a C-terminal Brp truncation: impaired SV recruitment to the CAZ and enhanced short-term synaptic depression. Extending the study beyond Drosophila synapses, we interrogated active zones of mouse rod bipolar cells. Here, too, we collected evidence for an evolutionarily conserved role of Cpx upstream of SNARE complex assembly where it participates in SV tethering to the CAZ.


2004 ◽  
Vol 15 (7) ◽  
pp. 3393-3405 ◽  
Author(s):  
Markus Geisler ◽  
Marjolaine Girin ◽  
Sabine Brandt ◽  
Vincent Vincenzetti ◽  
Sonia Plaza ◽  
...  

Previously, the immunophilin-like protein TWD1 from Arabidopsis has been demonstrated to interact with the ABC transporters AtPGP1 and its closest homologue, AtPGP19. Physiological and biochemical investigation of pgp1/pgp19 and of twd1 plants suggested a regulatory role of TWD1 on AtPGP1/AtPGP19 transport activities. To further understand the dramatic pleiotropic phenotype that is caused by loss-of-function mutation of the TWD1 gene, we were interested in other TWD1 interacting proteins. AtMRP1, a multidrug resistance-associated (MRP/ABCC)-like ABC transporter, has been isolated in a yeast two-hybrid screen. We demonstrate molecular interaction between TWD1 and ABC transporters AtMRP1 and its closest homologue, AtMRP2. Unlike AtPGP1, AtMRP1 binds to the C-terminal tetratricopeptide repeat domain of TWD1, which is well known to mediate protein-protein interactions. Domain mapping proved that TWD1 binds to a motif of AtMRP1 that resembles calmodulin-binding motifs; and calmodulin binding to the C-terminus of MRP1 was verified. By membrane fractionation and GFP-tagging, we localized AtMRP1 to the central vacuolar membrane and the TWD1-AtMRP1 complex was verified in vivo by coimmunoprecipitation. We were able to demonstrate that TWD1 binds to isolated vacuoles and has a significant impact on the uptake of metolachlor-GS and estradiol-β-glucuronide, well-known substrates of vacuolar transporters AtMRP1 and AtMRP2.


1999 ◽  
Vol 10 (2) ◽  
pp. 329-344 ◽  
Author(s):  
Martin Dünnwald ◽  
Alexander Varshavsky ◽  
Nils Johnsson

The split-ubiquitin technique was used to detect transient protein interactions in living cells. Nub, the N-terminal half of ubiquitin (Ub), was fused to Sec62p, a component of the protein translocation machinery in the endoplasmic reticulum ofSaccharomyces cerevisiae. Cub, the C-terminal half of Ub, was fused to the C terminus of a signal sequence. The reconstitution of a quasi-native Ub structure from the two halves of Ub, and the resulting cleavage by Ub-specific proteases at the C terminus of Cub, serve as a gauge of proximity between the two test proteins linked to Nub and Cub. Using this assay, we show that Sec62p is spatially close to the signal sequence of the prepro-α-factor in vivo. This proximity is confined to the nascent polypeptide chain immediately following the signal sequence. In addition, the extent of proximity depends on the nature of the signal sequence. Cub fusions that bore the signal sequence of invertase resulted in a much lower Ub reconstitution with Nub-Sec62p than otherwise identical test proteins bearing the signal sequence of prepro-α-factor. An inactive derivative of Sec62p failed to interact with signal sequences in this assay. These in vivo findings are consistent with Sec62p being part of a signal sequence-binding complex.


2004 ◽  
Vol 24 (12) ◽  
pp. 5521-5533 ◽  
Author(s):  
David A. Mangus ◽  
Matthew C. Evans ◽  
Nathan S. Agrin ◽  
Mandy Smith ◽  
Preetam Gongidi ◽  
...  

ABSTRACT PAN, a yeast poly(A) nuclease, plays an important nuclear role in the posttranscriptional maturation of mRNA poly(A) tails. The activity of this enzyme is dependent on its Pan2p and Pan3p subunits, as well as the presence of poly(A)-binding protein (Pab1p). We have identified and characterized the associated network of factors controlling the maturation of mRNA poly(A) tails in yeast and defined its relevant protein-protein interactions. Pan3p, a positive regulator of PAN activity, interacts with Pab1p, thus providing substrate specificity for this nuclease. Pab1p also regulates poly(A) tail trimming by interacting with Pbp1p, a factor that appears to negatively regulate PAN. Pan3p and Pbp1p both interact with themselves and with the C terminus of Pab1p. However, the domains required for Pan3p and Pbp1p binding on Pab1p are distinct. Single amino acid changes that disrupt Pan3p interaction with Pab1p have been identified and define a binding pocket in helices 2 and 3 of Pab1p's carboxy terminus. The importance of these amino acids for Pab1p-Pan3p interaction, and poly(A) tail regulation, is underscored by experiments demonstrating that strains harboring substitutions in these residues accumulate mRNAs with long poly(A) tails in vivo.


2019 ◽  
Vol 224 (9) ◽  
pp. 3263-3276 ◽  
Author(s):  
John F. Wesseling ◽  
Sébastien Phan ◽  
Eric A. Bushong ◽  
Léa Siksou ◽  
Serge Marty ◽  
...  

Abstract Most vesicles in the interior of synaptic terminals are clustered in clouds close to active zone regions of the plasma membrane where exocytosis occurs. Electron-dense structures, termed bridges, have been reported between a small minority of pairs of neighboring vesicles within the clouds. Synapsin proteins have been implicated previously, but the existence of the bridges as stable structures in vivo has been questioned. Here we use electron tomography to show that the bridges are present but less frequent in synapsin knockouts compared to wildtype. An analysis of distances between neighbors in wildtype tomograms indicated that the bridges are strong enough to resist centrifugal forces likely induced by fixation with aldehydes. The results confirm that the bridges are stable structures and that synapsin proteins are involved in formation or stabilization.


2009 ◽  
Vol 186 (1) ◽  
pp. 129-145 ◽  
Author(s):  
Wernher Fouquet ◽  
David Owald ◽  
Carolin Wichmann ◽  
Sara Mertel ◽  
Harald Depner ◽  
...  

Synaptic vesicles fuse at active zone (AZ) membranes where Ca2+ channels are clustered and that are typically decorated by electron-dense projections. Recently, mutants of the Drosophila melanogaster ERC/CAST family protein Bruchpilot (BRP) were shown to lack dense projections (T-bars) and to suffer from Ca2+ channel–clustering defects. In this study, we used high resolution light microscopy, electron microscopy, and intravital imaging to analyze the function of BRP in AZ assembly. Consistent with truncated BRP variants forming shortened T-bars, we identify BRP as a direct T-bar component at the AZ center with its N terminus closer to the AZ membrane than its C terminus. In contrast, Drosophila Liprin-α, another AZ-organizing protein, precedes BRP during the assembly of newly forming AZs by several hours and surrounds the AZ center in few discrete punctae. BRP seems responsible for effectively clustering Ca2+ channels beneath the T-bar density late in a protracted AZ formation process, potentially through a direct molecular interaction with intracellular Ca2+ channel domains.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Jiajie Diao ◽  
Jacqueline Burré ◽  
Sandro Vivona ◽  
Daniel J Cipriano ◽  
Manu Sharma ◽  
...  

α-Synuclein is a presynaptic protein that is implicated in Parkinson's and other neurodegenerative diseases. Physiologically, native α-synuclein promotes presynaptic SNARE-complex assembly, but its molecular mechanism of action remains unknown. Here, we found that native α-synuclein promotes clustering of synaptic-vesicle mimics, using a single-vesicle optical microscopy system. This vesicle-clustering activity was observed for both recombinant and native α-synuclein purified from mouse brain. Clustering was dependent on specific interactions of native α-synuclein with both synaptobrevin-2/VAMP2 and anionic lipids. Out of the three familial Parkinson's disease-related point mutants of α-synuclein, only the lipid-binding deficient mutation A30P disrupted clustering, hinting at a possible loss of function phenotype for this mutant. α-Synuclein had little effect on Ca2+-triggered fusion in our reconstituted single-vesicle system, consistent with in vivo data. α-Synuclein may therefore lead to accumulation of synaptic vesicles at the active zone, providing a ‘buffer’ of synaptic vesicles, without affecting neurotransmitter release itself.


2020 ◽  
Author(s):  
Helen Schmidt ◽  
Andrea Putnam ◽  
Dominique Rasoloson ◽  
Geraldine Seydoux

ABSTRACTGerm granules are RNA-protein condensates in germ cells. The mechanisms that drive germ granule assembly are not fully understood. MEG-3 is an intrinsically-disordered protein required for germ (P) granule assembly in C. elegans. MEG-3 forms gel-like condensates on liquid condensates assembled by PGL proteins. MEG-3 is related to the GCNA family and contains an N-terminal disordered region (IDR) and a predicted ordered C-terminus featuring an HMG-like motif (HMGL). Using in vitro and in vivo experiments, we find the MEG-3 C-terminus is necessary and sufficient to build MEG-3/PGL co-condensates independent of RNA. The HMGL domain is required for high affinity MEG-3/PGL binding in vitro and for assembly of MEG-3/PGL co-condensates in vivo. The MEG-3 IDR binds RNA in vitro and is required but not sufficient to recruit RNA to P granules. Our findings suggest that P granule assembly depends in part on protein-protein interactions that drive condensation independent of RNA.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259128
Author(s):  
Rosalyn C. Zimmermann ◽  
Mihaela E. Sardiu ◽  
Christa A. Manton ◽  
Md. Sayem Miah ◽  
Charles A. S. Banks ◽  
...  

Breast Cancer Metastasis Suppressor 1 (BRMS1) expression is associated with longer patient survival in multiple cancer types. Understanding BRMS1 functionality will provide insights into both mechanism of action and will enhance potential therapeutic development. In this study, we confirmed that the C-terminus of BRMS1 is critical for metastasis suppression and hypothesized that critical protein interactions in this region would explain its function. Phosphorylation status at S237 regulates BRMS1 protein interactions related to a variety of biological processes, phenotypes [cell cycle (e.g., CDKN2A), DNA repair (e.g., BRCA1)], and metastasis [(e.g., TCF2 and POLE2)]. Presence of S237 also directly decreased MDA-MB-231 breast carcinoma migration in vitro and metastases in vivo. The results add significantly to our understanding of how BRMS1 interactions with Sin3/HDAC complexes regulate metastasis and expand insights into BRMS1’s molecular role, as they demonstrate BRMS1 C-terminus involvement in distinct protein-protein interactions.


1993 ◽  
Vol 13 (2) ◽  
pp. 1069-1077 ◽  
Author(s):  
J Sidorova ◽  
L Breeden

SWI4 and SWI6 play a crucial role in START-specific transcription in Saccharomyces cerevisiae. SWI4 and SWI6 form a specific complex on the SCB (SWI4/6-dependent cell cycle box) sequences which have been found in the promoters of HO and G1 cyclin genes. Overproduction of SWI4 eliminates the SWI6 dependency of HO transcription in vivo and results in a new SWI6-independent, SCB-specific complex in vitro, which is heterogeneous and reacts with SWI4 antibodies. The C terminus of SWI4 is not required for SWI6-independent binding of SWI4 to SCB sequences, but it is necessary and sufficient for association with SWI6. Both SWI4 and SWI6 contain two copies of a 33-amino-acid TPLH repeat, which has been implicated in protein-protein interactions in other proteins. These repeats are not required for the SWI4-SWI6 association. Alanine substitutions in both TPLH repeats of SWI6 reduce its activity but do not affect the stability of the protein or its association with SWI4. However, these mutations reduce the ability of the SWI4/6 complex to bind DNA. Deletion of the lucine zipper motif in SWI6 also allows SWI4/6 complex formation, but it eliminates the DNA-binding ability of the SWI4/6 complex. This indicates that the integrity of two different regions of SWI6 is required for DNA binding by the SWI4/6 complex. From these data, we propose that the sequence-specific DNA-binding domain resides in SWI4 but that SWI6 controls the accessibility of this domain in the SWI4/6 complex.


Sign in / Sign up

Export Citation Format

Share Document