scholarly journals Xist RNA repeat E is essential for ASH2L recruitment to the inactive X and regulates histone modifications and escape gene expression

PLoS Genetics ◽  
2017 ◽  
Vol 13 (7) ◽  
pp. e1006890 ◽  
Author(s):  
Minghui Yue ◽  
Akiyo Ogawa ◽  
Norishige Yamada ◽  
John Lalith Charles Richard ◽  
Artem Barski ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John A. Halsall ◽  
Simon Andrews ◽  
Felix Krueger ◽  
Charlotte E. Rutledge ◽  
Gabriella Ficz ◽  
...  

AbstractChromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10–50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1–5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 729-742 ◽  
Author(s):  
Lena Annika Street ◽  
Ana Karina Morao ◽  
Lara Heermans Winterkorn ◽  
Chen-Yu Jiao ◽  
Sarah Elizabeth Albritton ◽  
...  

Condensins are evolutionarily conserved protein complexes that are required for chromosome segregation during cell division and genome organization during interphase. In Caenorhabditis elegans, a specialized condensin, which forms the core of the dosage compensation complex (DCC), binds to and represses X chromosome transcription. Here, we analyzed DCC localization and the effect of DCC depletion on histone modifications, transcription factor binding, and gene expression using chromatin immunoprecipitation sequencing and mRNA sequencing. Across the X, the DCC accumulates at accessible gene regulatory sites in active chromatin and not heterochromatin. The DCC is required for reducing the levels of activating histone modifications, including H3K4me3 and H3K27ac, but not repressive modification H3K9me3. In X-to-autosome fusion chromosomes, DCC spreading into the autosomal sequences locally reduces gene expression, thus establishing a direct link between DCC binding and repression. Together, our results indicate that DCC-mediated transcription repression is associated with a reduction in the activity of X chromosomal gene regulatory elements.


2016 ◽  
Vol 311 (6) ◽  
pp. L1245-L1258 ◽  
Author(s):  
Isaac K. Sundar ◽  
Irfan Rahman

Chromatin-modifying enzymes mediate DNA methylation and histone modifications on recruitment to specific target gene loci in response to various stimuli. The key enzymes that regulate chromatin accessibility for maintenance of modifications in DNA and histones, and for modulation of gene expression patterns in response to cigarette smoke (CS), are not known. We hypothesize that CS exposure alters the gene expression patterns of chromatin-modifying enzymes, which then affects multiple downstream pathways involved in the response to CS. We have, therefore, analyzed chromatin-modifying enzyme profiles and validated by quantitative real-time PCR (qPCR). We also performed immunoblot analysis of targeted histone marks in C57BL/6J mice exposed to acute and subchronic CS, and of lungs from nonsmokers, smokers, and patients with chronic obstructive pulmonary disease (COPD). We found a significant increase in expression of several chromatin modification enzymes, including DNA methyltransferases, histone acetyltransferases, histone methyltransferases, and SET domain proteins, histone kinases, and ubiquitinases. Our qPCR validation data revealed a significant downregulation of Dnmt1, Dnmt3a, Dnmt3b, Hdac2, Hdac4, Hat1, Prmt1, and Aurkb. We identified targeted chromatin histone marks (H3K56ac and H4K12ac), which are induced by CS. Thus CS-induced genotoxic stress differentially affects the expression of epigenetic modulators that regulate transcription of target genes via DNA methylation and site-specific histone modifications. This may have implications in devising epigenetic-based therapies for COPD and lung cancer.


PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30515 ◽  
Author(s):  
Andriy Bilichak ◽  
Yaroslav Ilnystkyy ◽  
Jens Hollunder ◽  
Igor Kovalchuk

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A673-A673
Author(s):  
Rhodes Ford ◽  
Natalie Rittenhouse ◽  
Nicole Scharping ◽  
Paolo Vignali ◽  
Greg Delgoffe ◽  
...  

BackgroundCD8+ T cells are a fundamental component of the anti-tumor response; however, tumor-infiltrating CD8+ T cells (TIL) are rendered dysfunctional by the tumor microenvironment. CD8+ TIL display an exhausted phenotype with decreased cytokine expression and increased expression of co-inhibitory receptors (IRs), such as PD-1 and Tim-3. The acquisition of IRs mark the progression of dysfunctional TIL from progenitors (PD-1Low) to terminally exhausted (PD-1+Tim-3+). How the chromatin landscape changes during this progression has not been described.MethodsUsing a low-input ChIP-based assay called Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we have profiled the histone modifications at the chromatin of tumor-infiltrating CD8+ T cell subsets to better understand the relationship between the epigenome and the transcriptome as TIL progress towards terminal exhaustion.ResultsWe have identified two epigenetic characteristics unique to terminally exhausted cells. First, we have identified a unique set of genes, characterized by active histone modifications that do not have correlated gene expression. These regions are enriched for AP-1 transcription factor motifs, yet most AP-1 family factors are actively downregulated in terminally exhausted cells, suggesting signals that promote downregulation of AP-1 expression negatively impacts gene expression. We have shown that inducing expression of AP-1 factors with a 41BB agonist correlates with increased expression of these anticorrelated genes. We have also found a substantial increase in the number of genes that exhibit bivalent chromatin marks, defined by the presence of both active (H3K4me3) and repressive (H3K27me3) chromatin modifications that inhibit gene expression. These bivalent genes in terminally exhausted T cells are not associated with plasticity and represent aberrant hypermethylation in response to tumor hypoxia, which is necessary and sufficient to promote downregulation of bivalent genes.ConclusionsOur study defines for the first time the roles of costimulation and the tumor microenvironment in driving epigenetic features of terminally exhausted tumor-infiltrating T cells. These results suggest that terminally exhausted T cells have genes that are primed for expression, given the right signals and are the basis for future work that will elucidate that factors that drive progression towards terminal T cell exhaustion at the epigenetic level and identify novel therapeutic targets to restore effector function of tumor T cells and mediate tumor clearance.


2019 ◽  
Vol 18 (2) ◽  
pp. 21-26
Author(s):  
E. A. Shestakova ◽  
T. A. Bogush

Introduction . Inactive X chromosome (Xi) is associated with noncoding XIST RNA, series of proteins and contains multiple epigenetic modifications that altogether determine a silence of the most of X-linked genes. Recently the data were obtained that tumor suppressor BRCA1 is also associated with Xi. The purpose of this study was to reveal the colocalization of BRCA1 and XIST RNA and precise spatial organization on Xi with the high resolution of confocal microscopy.Materials and methods . The object of the study is IMR90hTERT diploid immortalized fibroblast cell line. For BRCA1 and XIST RNA colocalization analysis on Xi the method of fluorescent hybridization in situ associated with immunofluorescent cell staining (immunoFISH) and confocal microscopy were used. For BRCA1 and heterochromatin protein-1 colocalization study the method of double immunofluorescent staining and common fluorescent microscopy were applied. Results . The study using confocal fluorescent microscopy with higher resolution has demonstrated at first the colocalization of BRCA1 with XIST RNA region of Xi revealed with XIST RNA probes and with replicating Xi and autosomes revealed with BrdU in late S-phase of cell cycle. Altogether, the data obtained suggest the involvement of BRCA1 in the inhibition of gene expression on Xi due to the regulation of XIST RNA association with Xi. Moreover, according to the results of confocal microscopy, BRCA1 also colocalizes with replicating Xi and autosomes revealed with BrdU in late S-phase of cell cycle. This indicates a possible involvement of this protein in the replication of pericentromeric repeats in cellular chromosomes. Colocalization of BRCA1 with heterochromatin protein-1α presented in pericentromeric regions of all chromosomes supports this suggestion.Conclusions . Altogether, the data obtained in this study suggest the involvement of BRCA1 in the inhibition of gene expression on Xi due to the association with noncoding inhibiting XIST RNA and in replication of heterochromatin regions. 


Sign in / Sign up

Export Citation Format

Share Document