scholarly journals Novel roles of ER stress in repressing neural activity and seizures through Mdm2- and p53-dependent protein translation

PLoS Genetics ◽  
2019 ◽  
Vol 15 (9) ◽  
pp. e1008364 ◽  
Author(s):  
Dai-Chi Liu ◽  
Daphne E. Eagleman ◽  
Nien-Pei Tsai
2021 ◽  
Vol 8 ◽  
Author(s):  
Anissa A. Widjaja ◽  
Sivakumar Viswanathan ◽  
Dong Jinrui ◽  
Brijesh K. Singh ◽  
Jessie Tan ◽  
...  

In fibroblasts, TGFβ1 stimulates IL11 upregulation that leads to an autocrine loop of IL11-dependent pro-fibrotic protein translation. The signaling pathways downstream of IL11, which acts via IL6ST, are contentious with both STAT3 and ERK implicated. Here we dissect IL11 signaling in fibroblasts and study IL11-dependent protein synthesis pathways in the context of approved anti-fibrotic drug mechanisms of action. We show that IL11-induced ERK activation drives fibrogenesis and while STAT3 phosphorylation (pSTAT3) is also seen, this appears unrelated to fibroblast activation. Ironically, recombinant human IL11, which has been used extensively in mouse experiments to infer STAT3 activity downstream of IL11, increases pSTAT3 in Il11ra1 null mouse fibroblasts. Unexpectedly, inhibition of STAT3 was found to induce severe proteotoxic ER stress, generalized fibroblast dysfunction and cell death. In contrast, inhibition of ERK prevented fibroblast activation in the absence of ER stress. IL11 stimulated an axis of ERK/mTOR/P70RSK protein translation and its selectivity for Collagen 1 synthesis was ascribed to an EPRS-regulated, ribosome stalling mechanism. Surprisingly, the anti-fibrotic drug nintedanib caused dose-dependent ER stress and lesser pSTAT3 expression. Pirfenidone had no effect on ER stress whereas anti-IL11 specifically inhibited the ERK/mTOR axis while reducing ER stress. These studies define the translation-specific signaling pathways downstream of IL11, intersect immune and metabolic signaling and reveal unappreciated effects of nintedanib.


2020 ◽  
Vol 117 (9) ◽  
pp. 4758-4769 ◽  
Author(s):  
Tao Zhou ◽  
Yunzhe Lu ◽  
Chongshen Xu ◽  
Rui Wang ◽  
Liye Zhang ◽  
...  

Tight junctions (TJs) are fundamental features of both epithelium and endothelium and are indispensable for vertebrate organ formation and homeostasis. However, mice lackingOccludin(Ocln) develop relatively normally to term. Here we show thatOclnis essential for mammary gland physiology, as mutant mice fail to produce milk. Surprisingly,Oclnnull mammary glands showed intact TJ function and normal epithelial morphogenesis, cell differentiation, and tissue polarity, suggesting thatOclnis not required for these processes. Using single-cell transcriptomics, we identified milk-producing cells (MPCs) and found they were progressively more prone to endoplasmic reticulum (ER) stress as protein production increased exponentially during late pregnancy and lactation. Importantly,Oclnloss in MPCs resulted in greatly heightened ER stress; this in turn led to increased apoptosis and acute shutdown of protein expression, ultimately leading to lactation failure in the mutant mice. We show that the increased ER stress was caused by a secretory failure of milk proteins inOclnnull cells. Consistent with an essential role in protein secretion, Occludin was seen to reside on secretory vesicles and to be bound to SNARE proteins. Taken together, our results demonstrate thatOclnprotects MPCs from ER stress by facilitating SNARE-dependent protein secretion and raise the possibility that other TJ components may participate in functions similar toOcln.


2016 ◽  
Vol 28 (2) ◽  
pp. 187
Author(s):  
C. Ahn ◽  
D. Lee ◽  
K. P. Kim ◽  
M. H. Lee ◽  
E.-B. Jeung

Endoplasmic reticulum (ER) regulates calcium ion concentration as a reservoir in the cell. ER stress is a cellular stress response related to the endoplasmic reticulum. At the initial stage of ER stress, ER tries to restore normal function by halting protein translation, degrading misfolded proteins, and increasing production of chaperones involved in protein folding. If ER fails to restore ER stress, ER stress can lead cells to apoptosis. To study the signaling between ER stress and calcium channels under ER-stressed circumstances, we designed a hypoxia-induced diabetic model. Nine-week-old male mice were chosen, maintained under hypoxic condition under 10% O2, 5% CO2 for 10 days, and the expression of ER stress markers and calcium channel gene expression were examined by real-time PCR. By maintaining hypoxic condition, the mice showed high glucose levels. Under this diabetic condition, in pancreatic beta cells, ER stress markers were elevated. This tendency showed an increase in calbindin-D9k KO mice. Chaperones such as calreticulin and calnexin were decreased, but in calbindin-D9k KO mice chaperone calnexin was not decreased. Interestingly, the calbindin-D9k KO normoxia mice showed increased glucose level compared with wild-type normoxia mice. Also, calnexin expression of pancreas was decreased in calbindin-D9k KO normoxia mice. This result indicates that pancreas cells were under endoplasmic reticulum stress. Taken together, calbindin may play an important role in endoplasmic reticulum stress in pancreas. This work was supported by the National Research Foundation of Korea (NRF) grant of Korean government (MEST) (No. 2013-010514).


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5104-5104
Author(s):  
Hirokazu Miki ◽  
Masahiro Abe ◽  
Kumiko Kagawa ◽  
Asuka Oda ◽  
Hiroe Amou ◽  
...  

Abstract Abstract 5104 Bortezomib (BTZ) is widely used in the treatment of myeloma (MM) with marked response rates in both relapsed/refractory as well as newly diagnosed MM. However, significant numbers of patients still remain outside benefit of the BTZ treatment; and various combinatory treatments with BTZ have been implemented to improve BTZ's anti-MM effects. On the other hand, immunotherapies seem attractive for yet incurable malignancies by chemotherapeutic agents such as MM and their clinical application has been studied. One such approach is a TNF-related apoptosis-inducing ligand (TRAIL)-mediated immunotherapy. In the present study, we therefore explored the role of BTZ on TRAIL receptor editing and its downstream signaling with special reference to endoplasmic reticulum (ER) stress and the cytotoxic effects of BTZ and anti-TRAIL receptor agonistic antibody in combination on MM cells. Most MM cells expressed DR4 but weakly DR5, while normal peripheral blood mononuclear cells expressed neither DR4 nor DR5. BTZ at 10 nM markedly up-regulated the surface levels of DR5 and its mRNA expression but not those of DR4 in MM cell lines and primary MM cells. Furthermore, BTZ decreased the levels of c-FLIP, an inhibitor of DISC, along with activation of caspase-8 and caspase-3, suggesting potentiation of the DR-mediated extrinsic apoptotic pathway. Consistently, BTZ and anti-DR5 agonistic antibody cooperatively enhanced the cytotoxicity against MM cells. BTZ induced phosphorylation of eIF2alpha, ATF4 and CHOP, along with disappearance of anti-apoptotic proteins including Mcl-1 in MM cells, suggesting the enhancement of ER stress and subsequent suppression of protein translation by BTZ. However, such induction of ER stress by BTZ was not observed in BTZ-resistant MM cell lines, KMS-11/BTZ and OPM-2/BTZ, with a point mutation in BTZ-binding proteasome beta5 subunit (Ri et al. Leukemia 2010). In KMS-11/BTZ and OPM-2/BTZ, surface protein as well as mRNA levels of DR5 were not up-regulated by BTZ, suggesting a critical role of ER stress in up-regulation of DR5 expression by BTZ. Because DR5 expression has been shown to be transcriptionally up-regulated by CHOP, the up-regulation of DR5 mRNA and protein in MM cells by BTZ is suggested to be at least in part due to CHOP induced by BTZ-mediated ER stress. Although BTZ exerts its anti-MM effects through induction of ER stress, the present study demonstrates that induction of ER stress by BTZ is also able to sensitize MM cells to TRAIL-mediated immunotherapy. Therefore, the combination of BTZ and TRAIL-mediated immunotherapy is warranted for further study. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Evgeniy Panzhinskiy ◽  
Søs Skovsø ◽  
Haoning Cen ◽  
Kwan Chu ◽  
Kate MacDonald ◽  
...  

Abstract The endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) helps decide cell survival in diabetes. The alternative eukaryotic initiation factor 2A (EIF2A) has been proposed to mediate EIF2S1-independent translation during cellular stress and viral infection, but its role in cells is unknown. EIF2A abundance is high in human and mouse islets relative to other tissues, and both thapsigargin and palmitate significantly increased EIF2A mRNA and EIF2A protein levels in MIN6 cells, mouse islets and human islets. Knockdowns of EIF2A, the related factor EIF2D, or both EIF2A and EIF2D, were not sufficient to cause apoptosis. On the other hand, transient or stable EIF2A over-expression protected MIN6 cells, primary mouse islets, and human islets from ER stress-induced, caspase-3-dependent apoptosis. Mechanistically, EIF2A overexpression decreased ERN1 (also known as IRE1) expression in thapsigargin-treated MIN6 cells or human islets. In vivo, cell specific EIF2A viral overexpression reduced ER stress, improved insulin secretion, and abrogated hyperglycemia in Ins2Akita/WT mice. EIF2A overexpression significantly increased expression of genes involved in protein translation and reduced expression of pro-apoptotic genes (e.g. ALDH1A3). Remarkably, the decrease in global protein synthesis during UPR was prevented by EIF2A, despite ER stress-induced EIF2S1 phosphorylation. The protective effects of EIF2A were additive to those of ISRIB, a drug that counteracts the effects of EIF2S1 phosphorylation. Cells overexpressing EIF2A showed higher expression of translation factor EIF2B5, which may contribute to the lack of translational inhibition in these cells. We conclude that EIF2A is a novel target for cell protection and the circumvention of EIF2S1-mediated translational repression.


2019 ◽  
Vol 201 (19) ◽  
Author(s):  
Landon J. Getz ◽  
Cameron S. Runte ◽  
Jan K. Rainey ◽  
Nikhil A. Thomas

ABSTRACT Phosphorylation events modify bacterial and archaeal proteomes, imparting cells with rapid and reversible responses to specific environmental stimuli or niches. Phosphorylated proteins are generally modified at one or more serine, threonine, or tyrosine residues. Within the last ten years, increasing numbers of global phosphoproteomic surveys of prokaryote species have revealed an abundance of tyrosine-phosphorylated proteins. In some cases, novel phosphorylation-dependent regulatory paradigms for cell division, gene transcription, and protein translation have been identified, suggesting that a wide scope of prokaryotic physiology remains to be characterized. Recent observations of bacterial proteins with putative phosphotyrosine binding pockets or Src homology 2 (SH2)-like domains suggest the presence of phosphotyrosine-dependent protein interaction networks. Here in this minireview, we focus on protein tyrosine phosphorylation, a posttranslational modification once thought to be rare in prokaryotes but which has emerged as an important regulatory facet in microbial biology.


Sign in / Sign up

Export Citation Format

Share Document